数列的分治

逆序数

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。给出一个整数序列,求该序列的逆序数。
Input
第1行:N,N为序列的长度(n <= 50000)
第2 - N + 1行:序列中的元素(0 <= Ai<= 10^9)
Output
输出逆序数
Sample Input
4
2
4
3
1
Sample Output
4

**此题就是逆序数的模板题,也就是数列的分治,归并排序。用分治的思想,将区间一分为二考虑,那么
总区间的逆序数就为分开后的左区间里的逆序数,右区间里的逆序数和左右区间比较产生的逆序数三者之和,在左右区间里的逆序数可以递归求得(顺便将区间排好序),而对于逆序数分别由左区间和右区间构成的数构成,我们则枚举右区间的数,统计左区间比他大的数字,累加起来就好了。**

#include<stdio.h>
typedef long long ll;
int a[50010],ans[50010];
int n,i,j,k;

ll solve(int l,int r)
{
    int mid = (l + r) >> 1;
    if(l == r)
        return 0;
    ll num = 0;
    num += solve(l , mid);
    num += solve(mid + 1, r);
    for(i = l, j = mid + 1, k = 0; i <= mid || j <=r; k++)
    {
        if(i > mid) ans[k] = a[j++];
        else if(j > r) ans[k] = a[i++];
        else if(a[i] <= a[j]) ans[k] = a[i++];
        else{

            ans[k] = a[j++];
            num += mid - i + 1;
        }
    }
    for(i = 0; i <= r-l; i++)
        a[i+l] = ans[i];
    return num;
}

int main()
{
    scanf("%d",&n);
    for(i = 0; i < n; i++)
        scanf("%d",&a[i]);
    printf("%lld\n",solve(0,n-1));
    return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值