HDU-1248
在一个国家仅有1分,2分,3分硬币,将钱N兑换成硬币有很多种兑法。请你编程序计算出共有多少种兑法。
Input
每行只有一个正整数N,N小于32768。
Output
对应每个输入,输出兑换方法数。
Sample Input
2934
12553
Sample Output
718831
13137761
一开始没用dp,直接就找规律:
1,全部为1是一种情况。
2,只包含一和二,是n/2种情况。
3,只包含一和三,是n/3种情况
4,其他的情况,就是一二三混合的,但又不和上面的重合,用n-3循环,减去一个三后的第二种情况即n-=3,sum+=n/2,直到n小于0。
#include<stdio.h>
typedef long long ll;
int main()
{
int n,i;
while(scanf("%d",&n)!=EOF)
{
int sum = 1;
for(i = 2;i <= 3; i++)
sum += n/i;
while(n-3>=0){
n -= 3;
sum += n/2;
}
printf("%lld\n",sum);
}
return 0;
}
还有就是完全背包问题,就是dp[j] += dp[j-w[i]];第一层循环是硬币面值,第二层循环是j元硬币兑换的种类数。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 50010;
int dp[N];
int main()
{
int n;
int v[10], w[10];
v[1] = w[1] = 1,v[2] = w[2] = 2, v[3] = w[3] = 3;
memset(dp, 0, sizeof dp);
dp[0] = 1;
for(int i = 1; i <= 3; i++)
for(int j = w[i]; j <= 32768; j++)
dp[j] += dp[j-w[i]];
while(~ scanf("%d", &n))
printf("%d\n", dp[n]);
return 0;
}