数学建模
文章平均质量分 78
nightmare_dimple
研究生一枚,慢慢摸索吧
展开
-
数学建模————统计问题之评价(三)
评价一般用来评估某件事物的成绩、水平或程度。通常每个个体都有多个不同的指标去衡量,除开数据的预处理之外,评价的过程可分为三大步: 一对于每个指标给每个个体打分; 二赋予每个指标一个权重; 三根据权重将指标得分综合起来,从而获得该个体的综合评价。 常见的评价算法有:TOPSIS理想解法、模糊综合评价、层次分析法、熵权法、秩和比综合评价、灰色关联分析、粗糙集综合原创 2017-07-04 11:01:36 · 34134 阅读 · 3 评论 -
数学建模————统计问题之仿真(四)
仿真,顾名思义,就是利用计算机模拟研究对象,对于那些用数学公式或者规则描述的系统,计算机可以将其通过数值模拟出来,还能实现可视化。就好比我们看的小说一样,创造一个世界,需要有初始的人或物质,再加上法则(规则),那么这个世界就会逐步成型,仿真也是如此,我们需要给这个模拟世界一个初始的状态(包含应有的数据),然后告诉他运转的规则。 真实的系统往往存在着很多不确定因素 ,比如:要原创 2017-07-04 13:15:11 · 12079 阅读 · 0 评论 -
数学建模 ————统计问题之预测(一)
该资料是笔者根据自身理解一点点写出来的,希望各位能尊重这一份来之不易的劳动成果。因个人水平有限,资料中难免会出现不足与错误,欢迎各位的批评指正。(笔者曾获得2015年全国大学生数学建模国家一等奖,2015研究生数学建模竞赛国家二等奖,2016年美国大学生数学建模竞赛M奖)统计算法总览 统计一词源于国情调查,一般来说包括三个含义:统计工作、统计资料和统计科学。其中统计工作是指的搜原创 2017-07-03 19:31:20 · 43091 阅读 · 10 评论 -
数学建模————统计问题之分类/聚类(二)
首先要弄明白分类和聚类的区别: 分类(判别):数据包含数据特征部分和样本标签部分,分类的目的就是判别新的数据特征到其应有的样本标签(类别)中。 比方说,现在告诉大家一个教室里面其中一半人每个人的性别(男女),现在需要大家将另一半人中每个人的性别判断出来,因此大家首先要做的的找到区分性别的特征,然后应用到另一半人身上,将其归类。 聚类:数据中只有数据特征,需原创 2017-07-03 20:33:25 · 20794 阅读 · 3 评论 -
贪婪算法————背包问题
贪婪算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 我们还是从例子中进行理解,以背包问题为例: “超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000d原创 2017-07-04 15:19:45 · 5991 阅读 · 0 评论 -
粒子群算法的matlab实现(一)
粒子群算法(Particle Swarm Optimization,PSO)是20世纪90年代兴起的一门学科,因其概念简明、实现方便、收敛速度快而为人所知。粒子群算法的基本思想是模拟鸟群随机搜寻食物的捕食行为,鸟群通过自身经验和种群之间的交流调整自己的搜寻路径,从而找到食物最多的地点。其中每只鸟的位置/路径则为自变量组合,每次到达的地点的食物密度即函数值。每次搜寻都会根据自身经验(自身历史搜寻的最原创 2017-07-04 15:45:39 · 167979 阅读 · 73 评论 -
粒子群算法的matlab实现(二)
上一次的博客中我将粒子群的搜索过程可视化了,并将其转存为了gif格式文件,这个过程我先在这里给大家讲一下:1.首先pause(),是在每次绘图之后暂停一段时间,单位是秒,再进行下一次绘图;2.而当要转存为gif文件时,这其实就是一种无声的视频文件,因此我们需要每一帧的图像,可以用pause,但是用drawnow更好,它的原理是保持当前窗口不变,继续下一次绘图。 因此将转存为g原创 2017-07-04 16:42:55 · 16841 阅读 · 20 评论 -
遗传算法的matlab实现
遗传算法(Genetic Algorithm,GA)是20世纪70年代初兴起的一门新兴学科。遗传算法的基本思想来源于达尔文的进化论和孟德尔的遗传学说,它通过模拟生物进化的过程来求解问题。生物中的基因对应优化问题中的变量组合,一个解则代表了一个个体。通过生物基因的交叉与变异来改变种群的性状(函数值)。通过进化过程中优胜劣汰的原则挑选出优秀的个体(函数值大或小),最终通过迭代的方式模拟生物的进化,得到原创 2017-07-04 19:44:34 · 39607 阅读 · 13 评论 -
遗传算法的matlab实现(续 )
上一篇博客中代码部分有人应该会有疑惑,在这里我先做一些介绍:自然选择部分使用了排名法,适应度越高越难被淘汰,但是适应度最高的不会被淘汰;里面出现了很多个个体,其中父代是一个种群N,交叉之后有了两种子代2N,变异之后也会出现子代N,共4N,因此自然选择需要淘汰到只剩N个个体,作为下一代的父代。 不过关于多维函数极值的遗传算法写法,很多人直接将每一个变量单独作为一个种群,原创 2017-07-06 20:12:13 · 4208 阅读 · 0 评论