分类器--模型评价指标


【】相关链接


【】学习笔记、要点整理

分类模型评价指标:

  1. Accuracy准确率【正确预测的】、
  2. Precision精确率【预测的正样本】、Recall召回率【实际正样本】
  3. F1 score
  4. ROC曲线、AUC
  5. P-R 曲线

    在正负样本分布得极不均匀(highly skewed datasets)的情况下
    PRC比ROC能更有效地反应分类器的好坏;

混淆矩阵:

在这里插入图片描述
行:代表实例的预测类别; P’ N’
列:代表实例的真实类别。 P N

【ConfuseMatrix】混淆矩阵============================
			____real真实类别_____
	pred	|	TP(11)	FP(01)	|P'
	预测	|	FN(00)	TN(10)	|N'
			—————————————————————
				P		N
	实际正样本	P =TP+FN	=真正+假负	#实际负样本N=TN+FP
	预测正样本	P'=TP+FP	=真正+假正
	真正率	TPR	=	TP/(TP+FN)
	假负率	FNR	=	FN/(TP+FN)	#分母为实际正样本
	真负率	TNR	=	TN/(TN+FP)	#分母为实际负样本
	假正率	FPR	=	FP/(TN+FP)
【accuracy】准确率============================
	accuracy	=	(TP+TN)/(TP+TN+FP+FN)
【precision】精确率/查准率:只针对【预测的正样本】
	#【表现】:在预测为正的样本中,有多少是被准确预测的【查准率】
	precison	=	TP/(TP+FP)



一文记住ROC、AUC

ROC

AUC


【】个人总结/常用命令

发布了3 篇原创文章 · 获赞 2 · 访问量 843
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览