利用scikitlearn画ROC曲线

一个完整的数据挖掘模型,最后都要进行模型评估,对于二分类来说,AUCROC这两个指标用到最多,所以 利用sklearn里面相应的函数进行模块搭建。

具体实现的代码可以参照下面博友的代码,评估svm的分类指标。注意里面的一些细节需要注意,一个是调用roc_curve 方法时,指明目标标签,否则会报错。具体是这个参数的设置pos_label ,以前在unionbigdata实习时学到的。

重点是以下的代码需要根据实际改写:

    mean_tpr = 0.0  
    mean_fpr = np.linspace(0, 1, 100)  
    all_tpr = []
    
    y_target = np.r_[train_y,test_y]
    cv = StratifiedKFold(y_target, n_folds=6)

        #画ROC曲线和计算AUC
        fpr, tpr, thresholds = roc_curve(test_y, predict,pos_label = 2)##指定正例标签,pos_label = ###########在数之联的时候学到的,要制定正例
        
        mean_tpr += interp(mean_fpr, fpr, tpr)          #对mean_tpr在mean_fpr处进行插值,通过scipy包调用interp()函数  
        mean_tpr[0] = 0.0                               #初始处为0  
        roc_auc = auc(fpr, tpr)  
        #画图,只需要plt.plot(fpr,tpr),变量roc_auc只是记录auc的值,通过auc()函数能计算出来  
        plt.plot(fpr, tpr, lw=1, label='ROC  %s (area = %0.3f)' % (classifier, roc_auc)) 


然后是博友的参考代码:

[python]  view plain   copy
  在CODE上查看代码片 派生到我的代码片
  1. # -*- coding: utf-8 -*-  
  2. """ 
  3. Created on Sun Apr 19 08:57:13 2015 
  4.  
  5. @author: shifeng 
  6. """  
  7. print(__doc__)  
  8.   
  9. import numpy as np  
  10. from scipy import interp  
  11. import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值