Time Limit: 10 Sec
Memory Limit: 259 MB
Description
一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E
心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人
,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某
个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。
Input
输入的第一行包含一个正整数P,表示模;
第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;
以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。
Output
若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。
【数据规模和约定】
设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数。
对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。
题目分析
很裸的扩展Lucas,不明白为什么是黑题
ans=(Cw1n∗Cw2n−w1∗Cw3n−w1−w2∗...∗Cwmn−w1−w2−...−wm−1)modp
a
n
s
=
(
C
n
w
1
∗
C
n
−
w
1
w
2
∗
C
n
−
w
1
−
w
2
w
3
∗
.
.
.
∗
C
n
−
w
1
−
w
2
−
.
.
.
−
w
m
−
1
w
m
)
mod
p
直接扩展Lucas
Lucas定理&&扩展Lucas
#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;
lt read()
{
lt f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int maxn=500010;
lt rem[10],ans=1;
lt pi[maxn],cnt;
lt a[maxn],b[maxn];
lt qpow(lt ai,lt k,lt mod)
{
lt mul=1;
while(k>0)
{
if(k&1)mul=(mul*ai)%mod;
ai=(ai*ai)%mod;
k>>=1;
}
return mul;
}
void exgcd(lt a,lt b,lt &x,lt &y)
{
if(b==0){ x=1; y=0; return;}
exgcd(b,a%b,x,y);
lt tp=x;
x=y; y=tp-a/b*y;
}
lt inv(lt a,lt b)
{
lt x,y;
exgcd(a,b,x,y);
return (x%b+b)%b;
}
void div(lt x)
{
for(lt i=2;i<=sqrt(x);++i)
{
if(x%i==0)
{
pi[++cnt]=i; b[cnt]=1;
while(x%i==0)b[cnt]*=i,x/=i;
}
}
if(x>1)pi[++cnt]=x,b[cnt]=x;
}
lt fac(lt n,lt pi,lt pk)
{
if(!n)return 1;
lt mul=1;
for(lt i=2;i<=pk;++i)
if(i%pi)mul=(mul*i)%pk;
mul=qpow(mul,n/pk,pk);
for(lt i=2;i<=n%pk;++i)
if(i%pi)mul=(mul*i)%pk;
return mul*fac(n/pi,pi,pk)%pk;
}
lt C(lt n,lt m,lt pi,lt pk)
{
lt facn=fac(n,pi,pk);
lt facm=fac(m,pi,pk);
lt facnm=fac(n-m,pi,pk);
lt kk=0;
for(lt i=n;i;i/=pi)kk+=i/pi;
for(lt i=m;i;i/=pi)kk-=i/pi;
for(lt i=n-m;i;i/=pi)kk-=i/pi;
return facn*inv(facm,pk)%pk*inv(facnm,pk)%pk*qpow(pi,kk,pk)%pk;
}
lt china()
{
lt ans=0,M=1,x,y;
for(int i=1;i<=cnt;++i) M*=b[i];
for(int i=1;i<=cnt;++i)
{
int tp=M/b[i];
exgcd(tp,b[i],x,y);
x=(x%b[i]+b[i])%b[i];
ans=(ans+tp*x*a[i])%M;
}
return (ans+M)%M;
}
lt exlucas(lt n,lt m,lt p)
{
for(int i=1;i<=cnt;++i)
a[i]=C(n,m,pi[i],b[i]);
return china();
}
int main()
{
lt p=read(),n=read(),m=read(),sum=0;
for(int i=1;i<=m;++i)
rem[i]=read(),sum+=rem[i];
if(sum>n){printf("Impossible");return 0;}
div(p);
for(int i=1;i<=m;++i)
{
ans=(ans*exlucas(n,rem[i],p))%p;
n-=rem[i];
}
printf("%lld",ans);
return 0;
}