BZOJ2142 || 洛谷P2183 礼物【扩展Lucas】

Time Limit: 10 Sec
Memory Limit: 259 MB

Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E
心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人
,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某
个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;
第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;
以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

【数据规模和约定】

设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数。
对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。


题目分析

很裸的扩展Lucas,不明白为什么是黑题
ans=(Cw1nCw2nw1Cw3nw1w2...Cwmnw1w2...wm1)modp a n s = ( C n w 1 ∗ C n − w 1 w 2 ∗ C n − w 1 − w 2 w 3 ∗ . . . ∗ C n − w 1 − w 2 − . . . − w m − 1 w m ) mod p
直接扩展Lucas

Lucas定理&&扩展Lucas

#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;

lt read()
{
    lt f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int maxn=500010;
lt rem[10],ans=1;
lt pi[maxn],cnt;
lt a[maxn],b[maxn];

lt qpow(lt ai,lt k,lt mod)
{
    lt mul=1;
    while(k>0)
    {
        if(k&1)mul=(mul*ai)%mod;
        ai=(ai*ai)%mod;
        k>>=1;
    }
    return mul;
}

void exgcd(lt a,lt b,lt &x,lt &y)
{
    if(b==0){ x=1; y=0; return;}
    exgcd(b,a%b,x,y);
    lt tp=x;
    x=y; y=tp-a/b*y;
}

lt inv(lt a,lt b)
{
    lt x,y;
    exgcd(a,b,x,y);
    return (x%b+b)%b;
}

void div(lt x)
{
    for(lt i=2;i<=sqrt(x);++i)
    {
        if(x%i==0)
        {
            pi[++cnt]=i; b[cnt]=1;
            while(x%i==0)b[cnt]*=i,x/=i;
        }
    }
    if(x>1)pi[++cnt]=x,b[cnt]=x;
}

lt fac(lt n,lt pi,lt pk)
{
    if(!n)return 1;
    lt mul=1;

    for(lt i=2;i<=pk;++i)
    if(i%pi)mul=(mul*i)%pk;
    mul=qpow(mul,n/pk,pk);

    for(lt i=2;i<=n%pk;++i)
    if(i%pi)mul=(mul*i)%pk;

    return mul*fac(n/pi,pi,pk)%pk;
}

lt C(lt n,lt m,lt pi,lt pk)
{
    lt facn=fac(n,pi,pk);
    lt facm=fac(m,pi,pk);
    lt facnm=fac(n-m,pi,pk);

    lt kk=0;
    for(lt i=n;i;i/=pi)kk+=i/pi;
    for(lt i=m;i;i/=pi)kk-=i/pi;
    for(lt i=n-m;i;i/=pi)kk-=i/pi;

    return facn*inv(facm,pk)%pk*inv(facnm,pk)%pk*qpow(pi,kk,pk)%pk;
}

lt china()
{
    lt ans=0,M=1,x,y;
    for(int i=1;i<=cnt;++i) M*=b[i];
    for(int i=1;i<=cnt;++i)
    {
        int tp=M/b[i];
        exgcd(tp,b[i],x,y);
        x=(x%b[i]+b[i])%b[i];
        ans=(ans+tp*x*a[i])%M;
    }
    return (ans+M)%M;
}

lt exlucas(lt n,lt m,lt p)
{
    for(int i=1;i<=cnt;++i)
    a[i]=C(n,m,pi[i],b[i]);
    return china();
}

int main()
{
    lt p=read(),n=read(),m=read(),sum=0;
    for(int i=1;i<=m;++i)
    rem[i]=read(),sum+=rem[i];
    if(sum>n){printf("Impossible");return 0;}

    div(p);
    for(int i=1;i<=m;++i)
    {
        ans=(ans*exlucas(n,rem[i],p))%p;
        n-=rem[i];
    }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值