BZOJ3994 || P3327 [SDOI2015]约数个数和【莫比乌斯反演】

Time Limit: 20 Sec
Memory Limit: 128 MB

Description

设d(x)为x的约数个数,给定N、M,求 ∑ i = 1 n ∑ j = 1 m d ( i j ) \sum_{i=1}^n\sum_{j=1}^md(ij) i=1nj=1md(ij)

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。
接下来的T行,每行两个整数N、M。

Output

T行,每行一个整数,表示你所求的答案。

HINT

1<=N, M<=50000
1<=T<=50000


题目分析

在蒟蒻望着屏幕发呆对此题无从下手半个小时后
点开题解发现上来就是一个结论之时内心是无比复杂的,复杂到已经语无伦次。。。

先看看这个蒟蒻不懂怎么证得结论
d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] d(ij)=xiyj[gcd(x,y)=1]
有了这个结论一切都好办了,直接带入
∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] \sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] i=1nj=1mxiyj[gcd(x,y)=1]
再莫比乌斯反演
∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j ∑ d ∣ g c d ( x , y ) μ ( d ) \sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}\sum_{d|gcd(x,y)}\mu(d) i=1nj=1mxiyjdgcd(x,y)μ(d)
把枚举 i , j i,j i,j的约数变成枚举 x , y x,y x,y的倍数
∑ i = 1 n ∑ j = 1 m ∑ x = 1 i ∑ y = 1 j [ x ∣ i ] [ y ∣ j ] ∑ d = 1 g c d ( x , y ) μ ( d ) [ d ∣ g c d ( x , y ) ] \sum_{i=1}^n\sum_{j=1}^m\sum_{x=1}^i\sum_{y=1}^j[x|i][y|j]\sum_{d=1}^{gcd(x,y)}\mu(d)[d|gcd(x,y)] i=1nj=1mx=1iy=1j[xi][yj]d=1gcd(x,y)μ(d)[dgcd(x,y)]

∑ x = 1 n ∑ y = 1 m ∑ t 1 = 1 ⌊ n x ⌋ ∑ t 2 = 1 ⌊ m y ⌋ ∑ d = 1 g c d ( x , y ) μ ( d ) [ d ∣ g c d ( x , y ) ] \sum_{x=1}^n\sum_{y=1}^m\sum_{t_1=1}^{\lfloor\frac{n}{x}\rfloor}\sum_{t_2=1}^{\lfloor\frac{m}{y}\rfloor}\sum_{d=1}^{gcd(x,y)}\mu(d)[d|gcd(x,y)] x=1ny=1mt1=1xnt2=1ymd=1gcd(x,y)μ(d)[dgcd(x,y)]
把d的枚举提前,把枚举 x , y x,y x,y变成枚举 d d d的倍数
∑ d = 1 m i n ( n , m ) ∑ x = 1 n ∑ y = 1 m ∑ t 1 = 1 ⌊ n x ⌋ ∑ t 2 = 1 ⌊ m y ⌋ μ ( d ) [ d ∣ g c d ( x , y ) ] \sum_{d=1}^{min(n,m)}\sum_{x=1}^n\sum_{y=1}^m\sum_{t_1=1}^{\lfloor\frac{n}{x}\rfloor}\sum_{t_2=1}^{\lfloor\frac{m}{y}\rfloor}\mu(d)[d|gcd(x,y)] d=1min(n,m)x=1ny=1mt1=1xnt2=1ymμ(d)[dgcd(x,y)]

∑ d = 1 m i n ( n , m ) ∑ k 1 = 1 ⌊ n d ⌋ ∑ k 2 = 1 ⌊ m d ⌋ ∑ t 1 = 1 ⌊ n d k 1 ⌋ ∑ t 2 = 1 ⌊ m d k 2 ⌋ μ ( d ) = ∑ d = 1 m i n ( n , m ) μ ( d ) ∑ k 1 = 1 ⌊ n d ⌋ ∑ k 2 = 1 ⌊ m d ⌋ ∑ t 1 = 1 ⌊ n d k 1 ⌋ ∑ t 2 = 1 ⌊ m d k 2 ⌋ 1 \sum_{d=1}^{min(n,m)}\sum_{k_1=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{k_2=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{t_1=1}^{\lfloor\frac{n}{dk_1}\rfloor}\sum_{t_2=1}^{\lfloor\frac{m}{dk_2}\rfloor}\mu(d)=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{k_1=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{k_2=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{t_1=1}^{\lfloor\frac{n}{dk_1}\rfloor}\sum_{t_2=1}^{\lfloor\frac{m}{dk_2}\rfloor}1 d=1min(n,m)k1=1dnk2=1dmt1=1dk1nt2=1dk2mμ(d)=d=1min(n,m)μ(d)k1=1dnk2=1dmt1=1dk1nt2=1dk2m1

看起来不太简洁啊,令 T 1 = ⌊ n d ⌋ , T 2 = ⌊ m d ⌋ T_1=\lfloor\frac{n}{d}\rfloor,T_2=\lfloor\frac{m}{d}\rfloor T1=dn,T2=dm

∑ d = 1 m i n ( n , m ) μ ( d ) ∑ i = 1 T 1 ∑ j = 1 T 2 ∑ x = 1 ⌊ T 1 i ⌋ ∑ y = 1 ⌊ T 2 j ⌋ 1 = ∑ d = 1 m i n ( n , m ) μ ( d ) ∑ i = 1 T 1 ⌊ T 1 i ⌋ ∑ j = 1 T 2 ⌊ T 2 j ⌋ \sum_{d=1}^{min(n,m)}\mu(d)\sum_{i=1}^{T_1}\sum_{j=1}^{T_2}\sum_{x=1}^{\lfloor\frac{T_1}{i}\rfloor}\sum_{y=1}^{\lfloor\frac{T_2}{j}\rfloor}1=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{i=1}^{T_1}\lfloor\frac{T_1}{i}\rfloor\sum_{j=1}^{T_2}\lfloor\frac{T_2}{j}\rfloor d=1min(n,m)μ(d)i=1T1j=1T2x=1iT1y=1jT21=d=1min(n,m)μ(d)i=1T1iT1j=1T2jT2

预处理 μ ( i ) \mu(i) μ(i)的前缀和以及 g ( n ) = ∑ i = 1 n ⌊ n i ⌋ g(n)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor g(n)=i=1nin之后整除分块求解答案即可

这里 g ( n ) g(n) g(n)预处理复杂度是 O ( n n ) O(n\sqrt n) O(nn ),其实是还有优化的余地的
仔细观察可以发现 g ( n ) g(n) g(n)其实就是 ∑ i = 1 n d ( i ) \sum_{i=1}^nd(i) i=1nd(i)(其中d(i)为i的约数个数)
由于约数个数是积性函数,完全可以与莫比乌斯函数一起处理
(然而因为蒟蒻比较懒就没写了)


#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;
 
int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int maxn=50010;
int T;
int miu[maxn];
int vis[maxn],prim[maxn],cnt;
lt sum[maxn],ds[maxn];

void Miu(int n)
{
    miu[1]=1;
    for(int i=2;i<=n;++i)
    {
        if(!vis[i]) prim[++cnt]=i,miu[i]=-1;
        for(int j=1;j<=cnt;++j)
        {
            if(i*prim[j]>n) break;
            vis[i*prim[j]]=1;
            if(i%prim[j]==0) break;
            else miu[i*prim[j]]=-miu[i];
        }
    }
    for(int i=1;i<=n;++i)
    sum[i]=sum[i-1]+miu[i];
    
    for(int i=1;i<=n;++i)
    for(int ll=1,rr;ll<=i;ll=rr+1)
    {
        rr=i/(i/ll);
        ds[i]+=1ll*(i/ll)*(rr-ll+1);
    }
}

lt query(int n,int m)
{
    lt res=0; int lim=min(n,m);
    for(int ll=1,rr;ll<=lim;ll=rr+1)
    {
        rr=min(n/(n/ll),m/(m/ll));
        res+=1ll*(sum[rr]-sum[ll-1])*ds[n/ll]*ds[m/ll];
    }
    return res;
}

int main()
{
    T=read(); Miu(maxn-5);
    while(T--)
    {
        int n=read(),m=read();
        printf("%lld\n",query(n,m));
    }
    return 0;
}
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可私 6信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可 6私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可私 6信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值