CF 453A(Little Pony and Expected Maximum-若干次掷骰,最大那次期望-推公式)


A. Little Pony and Expected Maximum
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter Shy. But she kept losing. Having returned to the castle, Twilight Sparkle became interested in the dice that were used in the game.

The dice has m faces: the first face of the dice contains a dot, the second one contains two dots, and so on, the m-th face contains mdots. Twilight Sparkle is sure that when the dice is tossed, each face appears with probability . Also she knows that each toss is independent from others. Help her to calculate the expected maximum number of dots she could get after tossing the dice n times.

Input

A single line contains two integers m and n (1 ≤ m, n ≤ 105).

Output

Output a single real number corresponding to the expected maximum. The answer will be considered correct if its relative or absolute error doesn't exceed 10  - 4.

Sample test(s)
input
6 1
output
3.500000000000
input
6 3
output
4.958333333333
input
2 2
output
1.750000000000
Note

Consider the third test example. If you've made two tosses:

  1. You can get 1 in the first toss, and 2 in the second. Maximum equals to 2.
  2. You can get 1 in the first toss, and 1 in the second. Maximum equals to 1.
  3. You can get 2 in the first toss, and 1 in the second. Maximum equals to 2.
  4. You can get 2 in the first toss, and 2 in the second. Maximum equals to 2.

The probability of each outcome is 0.25, that is expectation equals to:

You can read about expectation using the following link: http://en.wikipedia.org/wiki/Expected_value


设骰子n面,掷m次

易得最大次为k的概率:k^m/n^m-(k-1)^m/n^m=(k/n)^m-最大值为k-1的概率


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1e5+10)
#define eps (1e-4)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,m;
double t;
double powe(double a,int b)
{
	if (b==1) return a;
	if (b==0) return 1;
	double t=powe(a,b/2);
	t=t*t;
	if (b&1) t=t*a;
	return t;
}
int main()
{
//	freopen("Expected Maximum.in","r",stdin);
//	freopen(".out","w",stdout);
	scanf("%d%d",&n,&m);
	t=1;For(i,m) t/=n;// cout<<t<<endl;
	double ans=0,psum=0;
	For(k,n)
	{
		double t=(double)k/(double)n;
		t=powe(t,m);
		ans+=(t-psum)*k;
		psum=t;
	}
	cout<<ans<<endl;
	
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值