CF 668C(Little Artem and Random Variable-概率)

2个n面骰子,骰子上的数为1~n
同时掷骰子,得到的数为a,b
已知 P(min(a,b)=i),P(max(a,b)=i) P(a=i),P(b=i)

求出 ai=P(min(a,b)>=i),bi=P(max(a,b)<=i)
P(a<=i)P(b<=i)=P(max(a,b)<=i)=bi
P(a>=i)P(b>=i)=(1P(a<=i1))(1P(<=i1))
P(a<=i)+P(b<=i)=1+P(a<=i)P(b<=i)P(a>=i+1)P(b>=i+1)=1+biai+1

总之我们发现 P(a<=i)P(b<=i) aibi 唯一确定
且必为一个1元2次方程的2个解

#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define pb push_back
#define mp make_pair 
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
typedef long long ll;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define N (100010)
double a[N],b[N];
double p[N],q[N];
int main()
{
//  freopen("C.in","r",stdin);
//  freopen(".out","w",stdout);

    int n=read();
    b[0]=a[n+1]=0;
    a[0]=b[n+1]=1;
    For(i,n) cin>>b[i];
    For(i,n) cin>>a[i];
    ForD(i,n-1) a[i]+=a[i+1]; //P(min(a,b)>=i) 
    Fork(i,2,n) b[i]+=b[i-1]; //P(max(a,b)<=i)
    For(i,n) {
        double c=1+b[i]-a[i+1],d=b[i];
        double del=sqrt(abs(c*c-4*d));
        double x1=(c+del)/2,x2=(c-del)/2; 
        p[i]=x1,q[i]=x2;
    }
    For(i,n) printf("%.10lf ",p[i]-p[i-1]);puts("");
    For(i,n) printf("%.10lf ",q[i]-q[i-1]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值