NEUOJ 1207(Birthday present-前缀和)

给你一个数组a,给你一个k,你可以讲每个数减去不超过k,要求最后的GCD最大,求这个gcd
1 ≤ n ≤ 3·1e5; 1 ≤ k ≤ 1e6
1 ≤ ai ≤ 1e6

显然 min(ai)<=k 时,答案为 min(ai) ,
否则,每个数都对应一段长度为k的可行区间,答案至少为k。
考虑 gcd=g>k ,则此时可能的 ai ,可能为 [g,g+k],[2g,2g+k], 等,区间数为 106g
复杂度为 O(n(n+n/2+n/3+...+n/n))=O(nlogn)

#include<bits/stdc++.h>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define pb push_back
#define mp make_pair 
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %I64d\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define MAXN (2234567)
const int MA=1E6;
int a[MAXN];
int f[MAXN];
int main()
{
//  freopen("D.in","r",stdin);
//  freopen(".out","w",stdout);
    int n,k; 
    while(cin>>n>>k) {
        For(i,n) a[i]=read();
        int ans=k;
        sort(a+1,a+1+n);
        n=unique(a+1,a+1+n)-a-1;
        MEM(f)
        For(i,n) f[a[i]]++;
        For(i,1e6) f[i]+=f[i-1];
        if (a[1]<=k) cout<<a[1]<<endl;
        else {

            for(int i=a[n];i>k;i--) {
                int p=0;
                for(int j=i;j<=a[n];j+=i) p+=f[min(MA,j+k)]-f[j-1];
                if (p==n) {
                    ans=i;
                    break;
                }
            }
            cout<<ans<<endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值