NEUOJ 1343 Eat walnuts (容斥原理 + 逆元 + 唯一分解定理)

该博客介绍了如何利用容斥原理、逆元和唯一分解定理来解决NEUOJ 1343题,即求[1, n]中与m互素的数的和及其平方的和。通过初始化质数数组、获取输入数m的因数以及计算平方和与和的逆元,最终实现求解目标并输出结果。" 108904251,9271216,Kotlin方法与Lambda表达式详解,"['Android开发', 'Kotlin', '方法', 'Lambda']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经典问题,求[1, n]中与m互素的数的和与平方的和
#include <iostream>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <queue>

using namespace std;
typedef long long ll;
vector<int> primes, factors;
const int maxn = 10000;
const int mod = 1000000007;
ll n, m;
bool vis[maxn + 5];

void init() {
    for(int i = 2; i <= maxn; ++i) {
        for(int j = i * i; j <= maxn; j += i) {
            vis[j] = true;
        }
    }
    for(int i = 2; i <= maxn; ++i)
        if(!vis[i])  {
            primes.push_back(i);
            //printf("prime = %d\n", i);
        }
}

void get_factors(ll m) {
    factors.clear();
    for(int i = 0; i < primes.size(); ++i) {
        int p = primes[i];
        if(p > m) break;
        if(m % p == 0) {
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值