SenseTime Ace Coder Challenge 暨 商汤在线编程挑战赛*(抽球游戏-fwt开立方)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/nike0good/article/details/79976364

Anthony 手中有 n 个依次标着整数 a1, a2, , an (0a1a2an63) 的球,现在 Ben 会等概率随机抽出一个球,记录球上的数字并放回,重复该过程三次,最终三次记录下的数字的异或和就是 Ben 的得分。

经过非常非常多次游戏之后,Ben 分析出了得分的概率分布情况,你需要根据这个概率分布情况推测出 Anthony 手中的 n 个球上的数字,或者指出 Ben 的记录有误。

输入格式

第一行包含一个正整数 T,表示有 T 组测试数据。

接下来依次描述 T 组测试数据。对于每组测试数据:

第一行包含一个正整数 n,表示 Anthony 手中球的数量。

第二行包含 64 个整数 p0,p1,,p63,其中 pi 表示 Ben 的得分为 i 的概率乘以 n3 后的值,可以证明这个数字一定是一个整数。

保证 1T5000, 1n50, 0pin3 (i=0,1,,63)。

输出格式

对于每组测试数据,如果 Ben 的记录有误,输出一行信息"Case #x: -1"(不含引号),其中x表示这是第x组测试数据;如果 Ben 的记录正确,输出一行信息 "Case #x: a1 a2 ... an"(不含引号),相邻的两个数中间用一个空格隔开。如果有多组解,输出任意一组解均可。

样例输入

2
3 4
3 2 2 3
2 2 3 2
1 1 1 1
3 3
-1 -1 -1
-1 -1 -1
-1 -1 -1
样例输出

Case #1: 22
Case #2: -7

fwt直接pow(1.0/3)就行。
注意特判各种情况。

#include<bits/stdc++.h> 
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,0x3f,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define MEMx(a,b) memset(a,b,sizeof(a));
#define INF (0x3f3f3f3f)
#define F (1000000007)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define vi vector<int> 
#define pi pair<int,int>
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %lld\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<<a[i]<<' '; cout<<a[n]<<endl;
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<<a[i][j]<<' ';\
                        cout<<a[i][m]<<endl; \
                        } 
#pragma comment(linker, "/STACK:102400000,102400000")
#define All(x) (x).begin(),(x).end()
#define gmax(a,b) a=max(a,b);
#define gmin(a,b) a=min(a,b);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
bool fwt (ll a[] , int n ,bool on) {
    for ( int d = 1 ; d < n ; d <<= 1 ) {
        for ( int k = d << 1 , i = 0 ; i < n ; i += k ) {
            for ( int j = 0 ; j < d ; ++ j ) {
                ll x = a[i + j] , y = a[i + j + d] ;
                if(on){
                //xor
                    a[i + j] = ( x + y ) ;
                    a[i + j + d] = ( x - y );
                }
                else{
                //xor
                    if((x&1)!=(y&1)) return 0;
                    a[i + j] = ( x + y ) /2 ;
                    a[i + j + d] = ( x - y) /2 ;
                }
            }
        }
    }
    return 1;
}
#define MAXN (500)
ll a[MAXN];
int main()
{
//  freopen("C.in","r",stdin);
//  freopen(".out","w",stdout);
    int T=read();
    For(kcase,T) {
        int n=read(),tot=0;
        Rep(i,64) a[i]=read(),tot+=a[i];

        printf("Case #%d:",kcase);
        if(tot%(n*n*n)){
            puts(" -1");continue;
        }
        fwt(a,64,1);
        bool fl=0;
        Rep(i,64) {
            double t=max(-a[i],a[i]);
            t=pow(t,1.0/3);
            t=floor(t+0.5);
            ll c=t;
            if(a[i]<0) c=-c;
            if(c*c*c!=a[i]){
                fl=1;
            }else a[i]=c;
        }
        if(fl){
            puts(" -1");continue;
        }
        fl=fwt(a,64,0);
        tot=0;
        Rep(i,64) tot+=a[i];
        Rep(i,64) if(a[i]<0) fl=0;
        if(tot!=n||!fl) {
            puts(" -1");continue;
        }
        Rep(i,64) Rep(j,a[i]) printf(" %d",i);puts("");
    }
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页