hdoj/hdu 1465 不容易系列之一(全错排列的公式)

超级传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1465

 

题目大意:

给出n,求n的全错排列的总数,全错排列就是:

例如 n个盒子 1,2,3...n 里面放的小球的编号都和盒子的编号不一样

 

题目分析:

全错排列有公式:

W[n] = (n-1) * [ W[n-1] + W[n-2] ]

 

证明如下: 
设N个人为a,b,c,d...,N张卡为A,B,C,D... 
若a拿b的卡B,b也拿a的卡A,则显然只剩下N-2个人拿卡,自然是f(N-2)种了. 
若a拿b的卡B,b没拿a的卡A(与"b没拿b的卡B"相同),则显然与N-1个人拿卡一样,自然是f(N-1)种了. 
而a不一定拿B,只要是B,C,D...(N-1个)中的一个就可以了,所以在f(N-1)+f(N-2)再乘上N-1就行了. 
如果你学过解抽象函数方程的话,f(N)=(N-1)[f(N-1)+f(N-2)]在自然数内的解是f(N)=N![1/2!-1/3!+...+(-1)^N/N!](N=1时f(N)=1).

 

所以AC的代码就好写了:

#include<iostream>
using namespace std;

int main()
{
	__int64 W[25];
	int i;
	W[2] = 1;
	W[3] = 2;
	for(i=4;i<=20;i++)
	{
		W[i] = (i-1)*(W[i-1]+W[i-2]);
	}
	int n;
	while(scanf("%d",&n) != EOF)
	{
		printf("%I64d\n",W[n]);
	}
	return 0;
}


欧拉全错排公式的写法 f(n)=n![1/2!-1/3!+1/4!+...+(-1)^n*1/n!]   (n>1):

#include <iostream>
using namespace std;
long long fact(int x)
{
    long long s=1;
    for(int i=2;i<=x;++i)
    {
        s=s*i;
    }
    return s;
}
int main()
{
    int n,flag;
    long long sum;
    while(cin>>n)
    {
        sum=0,flag=1;
        for(int i=2;i<=n;++i)
        {
            if(i%2==0)
                flag=1;
            else flag=-1;
            sum+=flag*fact(n)/fact(i);
        }
        cout<<sum<<endl;
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值