代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
iris=datasets.load_iris() #加载本地iris数据
iris_x=iris.data
iris_y=iris.target
print(type(iris_x),iris_x.shape)
for key,value in iris.items():
print(key)
#将数据 随机 拆分成训练数据和测试数据,为7:3,拆分后的顺序是乱的
x_train,x_test,y_train,y_test=train_test_split(iris_x,iris_y,test_size=0.33)
print(y_test)
knn=KNeighborsClassifier(n_neighbors=7) # 使用KNN分类
print(knn)
knn.fit(x_train,y_train) # 训练
y_predict=knn.predict(x_test) # 预测
p_true=np.sum(y_predict==y_test)
print( "正确率:{0:.01%} {1}/{2}".format(p_true/len(y_test),p_true,len(y_test)))
运行结果
关于更多
jupyter学习过程
github链接