python sklearn中的KNN

代码

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

iris=datasets.load_iris() #加载本地iris数据
iris_x=iris.data
iris_y=iris.target
print(type(iris_x),iris_x.shape)

for key,value in iris.items():
    print(key)

#将数据 随机 拆分成训练数据和测试数据,为7:3,拆分后的顺序是乱的
x_train,x_test,y_train,y_test=train_test_split(iris_x,iris_y,test_size=0.33)
print(y_test)

knn=KNeighborsClassifier(n_neighbors=7) # 使用KNN分类
print(knn)
knn.fit(x_train,y_train) # 训练

y_predict=knn.predict(x_test) # 预测

p_true=np.sum(y_predict==y_test)
print( "正确率:{0:.01%} {1}/{2}".format(p_true/len(y_test),p_true,len(y_test)))

运行结果

这里写图片描述

关于更多

jupyter学习过程

github链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值