keras使用MLP分类MNIST

MLP(多层感知器神经网络)即多层全连接神经网络模型。

from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation

batch_size=128
nb_classes=10
nb_epoch=10
img_size=28*28

(x_train,y_train),(x_test,y_test)=mnist.load_data("E:\Code\PycharmProjects\KerasStudying\data\mnist.npz")

x_train=x_train.reshape(-1,img_size).astype('float32')/255
x_test=x_test.reshape(-1,img_size).astype('float32')/255
y_train=np_utils.to_categorical(y_train,nb_classes)
y_test=np_utils.to_categorical(y_test,nb_classes)


model=Sequential([
    Dense(512,input_shape=(img_size,),activation='relu',),
    Dropout(0.2),
    Dense(512,input_shape=(512,),activation='relu'),
    Dropout(0.2),
    Dense(10,input_shape=(512,),activation='softmax'),
])

model.summary()

model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])


model.fit(x_train,y_train,batch_size=batch_size,epochs=10,verbose=0,validation_data=(x_test,y_test))

score=model.evaluate(x_test,y_test,verbose=0)
print('accuracy:'+str(score[1]))

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值