从目前自己所掌握的关于机器学习后深度学习的知识中关于数学的相关知识发现还是统计学的概念和公式用的最多的,所以我就先将这一部分的相关知识总结罗列一下,对于一些数学基础比较薄弱的童鞋应该算是比较容易入门机器学习的,只是在你听到方差样本和概率密度这些词的时候不会一脸懵逼。
当然有些最基本的概念性的东西我就不去过多解释了,自己可以去百度。
一些基本概念:
1.中位数和众数:一组数中位于中间的数就称为中位数(排序好的);一组数中出现次数最多的那个数就称为众数
示例:
a=[1,2,3,2,3,4,5]
数列a中的中位数就是2,众数是2跟3
b=[1,2,3,4,9,6,2,5]
数列b中的中位数就是4与9的均值,众数是2
2.极差和中程数:一组数中最大数与最小数之间的距离就是极差;一组数中最大数与最小数求平均得到的数就是中程数。
示例:
上面a数列的极差就是5-1=4,中程数就是(1+5)/2=3 (好吧,不知道这里咋写数学公式,后面的数学公式实在不行我就在纸上写出来拍图贴上来)
3.条形统计图&