机器学习中要用到的数学知识之统计学(一)

        从目前自己所掌握的关于机器学习后深度学习的知识中关于数学的相关知识发现还是统计学的概念和公式用的最多的,所以我就先将这一部分的相关知识总结罗列一下,对于一些数学基础比较薄弱的童鞋应该算是比较容易入门机器学习的,只是在你听到方差样本和概率密度这些词的时候不会一脸懵逼。
        当然有些最基本的概念性的东西我就不去过多解释了,自己可以去百度。
        一些基本概念:
       1.中位数和众数:一组数中位于中间的数就称为中位数(排序好的);一组数中出现次数最多的那个数就称为众数
    示例:
        a=[1,2,3,2,3,4,5]
        数列a中的中位数就是2,众数是2跟3
        b=[1,2,3,4,9,6,2,5]
        数列b中的中位数就是4与9的均值,众数是2


    2.极差和中程数:一组数中最大数与最小数之间的距离就是极差;一组数中最大数与最小数求平均得到的数就是中程数。    
    示例:
        上面a数列的极差就是5-1=4,中程数就是(1+5)/2=3   (好吧,不知道这里咋写数学公式,后面的数学公式实在不行我就在纸上写出来拍图贴上来)
    3.条形统计图&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值