
机器学习
此生辽阔
这个作者很懒,什么都没留下…
展开
-
多模态在内容理解的应用
2020 年机器学习趋势:建立统一的跨媒体多模态内容理解内核描述类任务(表示,转换,对齐,融合)视频描述1 Predicting Visual Features from Text for Image and Video Caption Retrieval:输入原始图像,图像标题和众多描述图像的句子,将它们映射到隐空间并合成视频描述。2 Watch, Listen, and Describe: Globally and Locally Aligned Cross-Modal Attentions f转载 2020-10-17 11:05:26 · 2417 阅读 · 0 评论 -
多模态机器学习
这可能是「多模态机器学习」最通俗易懂的介绍《Tutorial on Multimodal Machine Learning》模态:每一种信息的来源或者形式,都可以称为一种模态。例如,人有触觉,听觉,视觉,嗅觉;信息的媒介,有语音、视频、文字等;多种多样的传感器,如雷达、红外、加速度计等。以上的每一种都可以称为一种模态。模态也可以有非常广泛的定义,比如我们可以把两种不同的语言当做是两种模态,甚至在两种不同情况下采集到的数据集,亦可认为是两种模态。多模态机器学习,英文全称 MultiModal Mach转载 2020-10-16 14:10:15 · 1251 阅读 · 0 评论 -
黑马机器学习笔记(四)线性回归
线性回归欠拟合与过拟合对线性回归做改进得到了岭回归算法逻辑回归,是一个分类算法模型保存与加载(不用重复训练)无监督学习(以Kmeans为例)如何判断一个问题是不是回归问题?看目标值是不是连续的数据什么是线性回归?应用场景:房价预测线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归h(w)是目标值广义的线性模型非线原创 2020-10-05 16:59:49 · 489 阅读 · 0 评论 -
黑马机器学习笔记(三)
决策树算法对鸢尾花分类原创 2020-09-30 11:17:18 · 276 阅读 · 0 评论 -
黑马机器学习笔记(二)
Sklearn转换器和预估器估计器(sklearn机器学习算法的实现)在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API1、用于分类的估计器:sklearn.neighbors k-近邻算法sklearn.naive_bayes 贝叶斯sklearn.linear_model.LogisticRegression 逻辑回归sklearn.tree 决策树与随机森林2、用于回归的估计器:sklearn.linear_model.LinearRegre原创 2020-09-28 22:30:36 · 368 阅读 · 0 评论 -
黑马机器学习笔记(一)
机器学习算法分类目标值是类别(离散)--------分类问题(监督学习)目标值是连续数据--------------回归问题(监督学习)没有目标值--------------------无监督学习1、预测明天的气温是多少度?回归2、预测明天是阴、晴还是雨?分类3、人脸年龄预测?回归/分类4、人脸识别?分类分类:k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归回归:线性回归、岭回归机器学习开发流程1获取数据2数据处理3特征工程4使用机器学习算法训练5模型评估学习资料、框架介原创 2020-09-27 23:02:07 · 697 阅读 · 0 评论 -
Scipy介绍
Scipy是基于Numpy在科学计算领域非常强大的一个库。在优化、非线性方程求解、常微分方程等方面应用广泛,因此可以与Numpy、pandas、matplotlib结合来替代Matlab。SciPy (pronounced “Sigh Pie”) 是一个开源的数学、科学和工程计算包。Scipy是一个用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。它用于有效计算Numpy矩阵,使Numpy和Scipy协同工作,高效解决问题。Python机器原创 2020-08-24 17:44:20 · 1184 阅读 · 0 评论 -
import matplotlib.pyplot as plt
Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图, 直方图,功率谱,条形图,错误图,散点图等。 Matplotlib.pyplot 常用方法...原创 2020-08-24 17:35:10 · 3835 阅读 · 0 评论 -
sklearn介绍
sklearn 中文文档sklearn 中文文档SKlearn官网:http://scikit-learn.org/stable/index.html机器学习入门之sklearn介绍scikit /saikit/scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法。它包含了从数据预处理到训练模型的各个方面。sklearn有原创 2020-08-24 17:32:15 · 1139 阅读 · 0 评论 -
机器学习文章
《CNN经典论文带读 & 代码复现》原创 2020-08-22 23:07:56 · 168 阅读 · 0 评论 -
ML学习笔记(二)----交叉验证、偏差和方差分析
什么是交叉验证?交叉验证是一种模型验证技术,可用于评估统计分析(模型)结果在其它独立数据集上的泛化能力。它主要用于预测,我们可以用它来评估预测模型在实践中的准确度。交叉验证的目标是定义一个数据集,以便于在训练阶段(例如,验证数据集)中测试模型,从而限制模型过拟合、欠拟合等问题,并且帮助我们了解模型在其它独立数据集上的泛化能力。值得一提的是,验证集和训练集必须满足独立同分布条件,否则交叉验证只会让结果变得更加糟糕。验证有助于我们评估模型的质量验证有助于我们挑选出那些能够在预测数据集上取得最好性能的模型原创 2020-08-09 10:13:17 · 3083 阅读 · 1 评论 -
ML学习笔记(一)机器学习概述
参考文献:张迪. 基于机器学习的手势识别技术研究[D].南京邮电大学,2019.什么是机器学习机器学习是一门涉及多领域的交叉型学科,研究计算机如何模拟人类的学习行为,从经验中获取知识与技能,通过不断学习对已有的知识结构进行完善。在机器学习中,人类的经验相当于数据、人类的学习能力相当于学习算法、已有的知识架构相当于模型。即机器学习是指计算机通过对大量数据样本进行分析,通过学习算法发现数据中隐藏的特征与规律,通过不断学习得到经验与知识模型,可以对未知的数据进行预测。机器学习是对能通过经验自动改进的计算机算原创 2020-08-03 10:57:21 · 1574 阅读 · 0 评论