
论文学习
文章平均质量分 70
此生辽阔
这个作者很懒,什么都没留下…
展开
-
写论文之mathpix snipping tool识别图片中的公式并通过MathType粘贴到word
问题描述我有一些图片格式的公式需要转换成文字格式的数学公式,但是不想手敲软件准备1 MathType链接:https://www.aliyundrive.com/s/iShnTViR6SN根据教程安装配置即可2 mathpix snipping tool这个自己下载正版就好了,注册一个账号每个月有50次免费使用的机会下载地址: https://mathpix.com/#downloads3 操作流程1 安装并打开mathpix2 点击截图按钮3 选择要截图的区域4原创 2022-02-18 11:41:43 · 7508 阅读 · 1 评论 -
论文翻译(16)--Towards Real-Time Multi-Object Tracking
Towards Real-Time Multi-Object Tracking实时多目标跟踪论文地址链接:https://pan.baidu.com/s/1nOMohvN7Mt1ReSFuYLTh4g提取码:ecqa论文地址:https://arxiv.org/pdf/1909.12605v1.pdf代码地址:https://github.com/Zhongdao/Towards-Realtime-MOT摘要:现代多目标跟踪系统通常遵循检测跟踪模式。它具有1)用于目标定位的检测模型和2)用于数原创 2020-12-07 15:46:58 · 489 阅读 · 0 评论 -
论文翻译(15)--Thermal Face Recognition Under Temporal Variation Conditions
Thermal Face Recognition Under Temporal Variation Conditions时间变化条件下的热人脸识别摘要:本文分析了红外人脸图像在用于人脸识别系统时产生的时间变化问题。热人脸图像中存在的时间变化主要是由于不同的环境条件、受试者的生理变化以及红外探测器在捕获时的响应度差异,这些都会影响红外人脸识别系统的性能。为了完成这篇论文,我们创建了两个热面数据库,其中包括真实和可变条件下的捕捉会话。我们还提出了两个标准来量化数据集之间的时间变化。热人脸识别系统采用了以下五原创 2020-11-29 17:29:47 · 673 阅读 · 0 评论 -
论文翻译(13)--CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation
CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline EvaluationCASME II:一个改进的自发微表达数据库及基线评估论文地址:链接:https://pan.baidu.com/s/1k6AY4W2zU1aENtTo5BZ3Mg提取码:a042摘要一个健壮的自动微表情识别系统将在国家安全、警察讯问和临床诊断中有广泛的应用。开发这样一个系统需要高质量的数据库和足够的训练样本,而目前还没有。我原创 2020-11-15 16:52:29 · 2184 阅读 · 5 评论 -
论文翻译(12)--A Bayesian Model for Crowd Escape Behavior Detection
Association of Heart Rates with Stress Response Inventory Scores in Different Age Groups不同年龄组心率与应激反应量表评分的关系论文地址摘要——许多研究报道心率变化与精神压力有关。最近,设计了一个压力反应问卷(SRI)来对过去两周发生的与精神压力相关的身体、精神和情绪症状进行评分。然而,在手机等移动设备中,性权利倡议有太多的项目需要例行询问。此外,它的个人分数可能对估计不同年龄组的压力水平没有同等的贡献。因此,我们试原创 2020-11-12 16:14:27 · 982 阅读 · 1 评论 -
论文翻译(11)-CASME Database: A Dataset of Spontaneous Micro-Expressions Collected From Neutralized Faces
CASME数据库:从被中和的人脸中收集的自发微表情数据集CASME Database: A Dataset of Spontaneous Micro-Expressions Collected From Neutralized Faces论文地址:链接:https://pan.baidu.com/s/1PggKePEXd324YjkX9AVTHA 提取码:npaf摘要微表情是转瞬即逝的面部表情,揭示了人们试图隐藏的真实情感。这些是检测谎言和危险行为的重要线索,因此在诸如临床领域和国家安全等各个领域具原创 2020-11-08 23:05:55 · 1343 阅读 · 0 评论 -
论文翻译(10)--CASME2: A Database for Spontaneous Macro-Expression and Micro-Expression Spotting and Rec
CAS(ME)2:自发宏表情和微表情识别数据库CAS(ME)2: A Database for Spontaneous Macro-Expression and Micro-Expression Spotting and Recognition论文地址链接:https://pan.baidu.com/s/1nBoNxh3-Y_GlG93X6o-m3A 提取码:3qob摘要欺骗是一种非常常见的现象,对它的检测可以对我们的日常生活有益。与其他欺骗线索相比,微表情作为一种很有前途的欺骗检测线索显示出巨原创 2020-11-08 20:38:45 · 4121 阅读 · 0 评论 -
论文翻译(9)---A Convolution Bidirectional Long Short-Term Memory Neural Network for Driver Emotion Recog
期刊:IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTA TION SYSTEMS论文地址链接:https://pan.baidu.com/s/1l-LybqzJ3YOfs5aM0oxkAQ提取码:zqdcA Convolution Bidirectional Long Short-TermMemory Neural Network for Driver Emotion Recognition用于驾驶员情绪识别的卷积双向长短期记忆神经网络摘要实时识别驾驶员情原创 2020-10-30 09:51:53 · 1264 阅读 · 4 评论 -
论文翻译(8)---A Neural Micro-Expression Recognizer
一种神经微表情识别器论文+源代码地址链接:https://pan.baidu.com/s/1lKEOWG75sg57J0z7lTr3lw提取码:yysigithub地址:https://github.com/xiaobaishu0097/MEGC2019摘要识别微表情是重要和批判性研究和重要应用的基础,我们推测,这个问题需要了解细微的人脸运动,整合人脸结构,以及有限训练数据的解决方案。在本文中,我们构建了一个有效的微表情识别系统,该系统利用了来自这些推测的技术。首先,我们引入一种基于起始帧和顶点原创 2020-10-28 12:51:13 · 2453 阅读 · 6 评论 -
论文翻译(7)---Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression Recognition
地址:https://www.cnblogs.com/shirley-bhu/p/9111663.html用于面部微表情识别的丰富长期递归卷积网络论文地址:链接:https://pan.baidu.com/s/19l51NVCcwq9b8H69Yrze5g提取码:mgijGitHub:https://github.com/IcedDoggie/Micro-Expression-with-Deep-Learning摘要面部微表情识别因其在运动中的微妙性和有限的数据库而对研究人员提出了巨大的挑战。转载 2020-10-26 16:53:02 · 474 阅读 · 0 评论 -
论文翻译(6)--The time - frequency characteristics of EEG activities while recognizing microexpressions
识别微表情时脑电活动的时频特征论文地址:链接:https://pan.baidu.com/s/1A4-9U6x68e02MRt5UGYBFg提取码:0onc摘要微表情(持续时间小于200 ms)对于判断人的真实情绪很重要。关于识别微表情时脑电图活动的时间-频率特征知之甚少。我们测验了与识别微表情和宏表情(持续时间超过200毫秒)相关的神经活动。将事件相关谱扰动(ERSP)输入到重复测量方差分析中,结果表明事件相关谱扰动持续时间的主要影响是显著的,与300 ms相比,在识别持续时间为40 ms的表达原创 2020-10-25 18:34:58 · 1476 阅读 · 0 评论 -
论文翻译(5)-Contextual Inter-modal Attention for Multi-modal Sentiment Analysis
Contextual Inter-modal Attention for Multi-modal Sentiment Analysis多模态情感分析中的语境跨模态注意github地址:https://github.com/soujanyaporia/contextual-multimodal-fusion链接:https://pan.baidu.com/s/1bNsgWInUlG2-M88PSXGcPQ提取码:uk6m摘要多模态情感分析提供了各种挑战,其中之一是不同输入模态的有效组合,即文本、视原创 2020-10-18 11:20:46 · 3595 阅读 · 5 评论 -
论文翻译(4)-Context-Dependent Sentiment Analysis in User-Generated Videos
Context-Dependent Sentiment Analysis in User-Generated Videos用户生成视频中的上下文相关情感分析论文及代码地址:https://github.com/soujanyaporia/multimodal-sentiment-analysis链接:https://pan.baidu.com/s/1SalF1JSWYvzSSc2A_zHZRA提取码:v72o摘要多模态情感分析是一个正在发展的研究领域,它涉及视频中情感的识别。目前的研究认为话语是原创 2020-10-17 19:59:21 · 4173 阅读 · 1 评论 -
论文翻译-Three Stream 3D CNN with SE Block for Micro- Expression Recognition
用于微表情识别的三流3D CNN论文地址:链接:https://pan.baidu.com/s/1VQxxIKb51N4DUCnLiOUP3g提取码:55e7摘要——微表情是一种短期的、不易察觉的面部表情。本文提出了一种利用三维神经网络进行微表情识别的方法。三个不同的面部区域被用作三个流的输入。在网络中加入SE块可以自适应地学习每个特征通道的权重。实验结果表明,该方法能有效提高微表情的识别性能。关键词——微表情识别;挤压和励磁网络;3D CNN一.引言面部表情是人类日常交流的重要组成部分,传递着原创 2020-10-16 10:09:40 · 1205 阅读 · 2 评论 -
论文翻译-LSTM Multi-modal UNet for Brain Tumor Segmentation
用于脑肿瘤分割的LSTM多模态神经网络论文地址链接:https://pan.baidu.com/s/1HuPtnRvVuTgiwv8FZh0juw提取码:xvsugithub地址 https://github.com/HowieMa/lstm_multi_modal_UNet摘要——卷积神经网络等深度学习模型已广泛应用于三维生物医学图像分割。然而,它们中的大多数既没有考虑不同模态之间的相关性,也没有充分利用深度信息。为了更好地利用多模态和深度信息,我们提出了一种在多模态磁共振图像中分割脑肿瘤的结构原创 2020-10-15 14:31:23 · 4147 阅读 · 4 评论 -
重点导读-Non-Contact Emotion Recognition CombiningHeart Rate and Facial Expression for Interactive Gamin
通过Kinect2.0捕获的视频对心率和表情进行连续识别。双向长短期记忆网络用于学习心率特征,卷积神经网络用于学习表情特征。为了进一步满足实时性的要求,采用自组织神经网络融合心率和表情特征,能够很好地识别运动员的情绪。实验结果表明,该模型对不同游戏中的“兴奋”、“愤怒”、“悲伤”和“平静”四种情绪具有较高的准确率和较低的计算时间。此外,情绪的强度可以通过心率值来估计。首先,利用特征矩阵联合近似对角化算法对红-绿-蓝和红外四通道信号进行独立分量分析。并且对获得的独立分量进行快速傅立叶变换(FFT),以匹配原创 2020-10-13 14:10:55 · 486 阅读 · 0 评论 -
论文学习-Non-Contact Emotion Recognition Combining Heart Rate and Facial Expression for Interactive Gami
Non-Contact Emotion Recognition CombiningHeart Rate and Facial Expression for Interactive Gaming Environments交互式游戏环境中结合心率和面部表情的非接触式情感识别论文地址链接:https://pan.baidu.com/s/1aQY-RyWsvUZ1j68zYLNkvg提取码:2wnv摘要:在玩互动游戏时,优化用户娱乐或学习体验的关键是理解他的情绪反应。目前的方法大多利用侵入性的生理信号来检原创 2020-10-12 15:26:47 · 1335 阅读 · 5 评论