【LeetCode】P7 整数反转

P7 整数反转

题目链接:7. 整数反转.

题目描述

给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。

示例:

输入: 123
输出: 321

输入: -123
输出: -321

输入: 120
输出: 21

假设我们的环境只能存储得下 32 位的有符号整数,则其数值范围为 [ − 2 31 , 2 31 − 1 ] [−2^{31}, 2^{31}−1] [231,2311]。请根据这个假设,如果反转后整数溢出那么就返回 0。

题解

思路

将 32 位的有符号整数 x 反转为 ans

关键代码:

ans=ans*10+x%10;
x/=10;

但是 ans=ans*10+x%10 很危险,这样写可能会导致溢出。
所以我们要在计算之前对进行检查是否会导致溢出

  • 检查方式1(对应参考代码1)
    ans*10/10!=ans 则说明 ans*10 会导致溢出

  • 检查方式2(对应参考代码2)
    使用整型上、下限 INT_MAXINT_MIN 来辅助检验

    • ans*10+x%10 > INT_MAX 发生正溢,此时 x 的取值只能为 1 或 2,所以 ans > INT_MAX/10
    • ans*10+x%10 < INT_MIN 发生负溢,此时 x 的取值只能为 -1 或 -2,所以 ans < INT_MIN/10

算法

  • 参考代码1
class Solution {
public:
	int reverse(int x) {
		int ans=0;
		int temp;
		while(x){
			temp=(unsigned)(ans)*10;
			if(temp/10!=ans){
				return 0;
			}
			ans=temp+x%10;
			x/=10;
		}
		return ans;
	}
};
  • 参考代码2
class Solution {
public:
	int reverse(int x) {
		int ans=0;
		while(x){
			if(ans>INT_MAX/10||ans<INT_MIN/10){
				return 0;
			}
			ans=ans*10+x%10;
			x/=10;
		}
		return ans;
	}
};

复杂度分析

假设要反转的 32 位的有符号整数为 x x x

  • 时间复杂度: O ( log ⁡ ( x ) ) O(\log(x)) O(log(x)),因为整数 x x x 的数位约为 log ⁡ 10 x \log_{10}x log10x
  • 空间复杂度: O ( 1 ) O(1) O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值