Positive Semidefinite Matrix

半正定矩阵(Positive Semidefinite Matrix)

半正定二次型

定义:设二次型 x T A x \boldsymbol{x^T}A\boldsymbol{x} xTAx,若对任意 x ≠ 0 \boldsymbol{x} \neq \boldsymbol{0} x=0,都有 f ( x ) ⩾ 0 f(\boldsymbol{x})\geqslant0 f(x)0,则称 f f f 为半正定二次型。

半正定矩阵

定义:设实对称矩阵 A A A,若对任意 x ≠ 0 \boldsymbol{x} \neq \boldsymbol{0} x=0,都有 x T A x ⩾ 0 \boldsymbol{x^T}A\boldsymbol{x}\geqslant0 xTAx0,则称 A A A 为半正定矩阵。

定理: n n n 元二次型 f = x T A x f=x^TAx f=xTAx 为半正定的充分必要条件:它的标准形的 n n n 个系数全为非负,即它的规范形的 n n n 个系数全为 0 0 0 1 1 1

证: 设可逆变换 x = C y x=Cy x=Cy 使
f ( x ) = f ( C y ) = ∑ i = 1 n k i y i 2 f(x)=f(Cy)=\sum_{i=1}^{n}k_iy_i^2 f(x)=f(Cy)=i=1nkiyi2
​ 充分性:设 k i ⩾ 0   ( i = 1 , 2 , . . . , n ) k_i\geqslant0\ (i=1,2,...,n) ki0 (i=1,2,...,n),故
f ( x ) = ∑ i = 1 n k i y i 2 ⩾ 0 f(x)=\sum_{i=1}^{n}k_iy_i^2 \geqslant 0 f(x)=i=1nkiyi20
​ 必要性:反证法,假设有 k s < 0 k_s<0 ks<0,则当 y = e s y=e_s y=es(单位坐标向量)时, C e s ≠ 0 Ce_s\neq0 Ces=0 f ( C e s ) = k s < 0 f(Ce_s)=k_s<0 f(Ces)=ks<0,这与 f f f 为半正定相矛盾,即证得 k i ⩾ 0   ( i = 1 , 2 , . . . , n ) k_i\geqslant0\ (i=1,2,...,n) ki0 (i=1,2,...,n)

推论:对称矩阵 A A A 为半正定矩阵的充分必要条件: A A A 的特征值全为非负。

证: n n n 阶对称矩阵 A A A 为半正定矩阵
   ⟺    \iff f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 为半正定二次型
   ⟺    \iff f f f 的标准形的 n n n 个系数全为非负,而这 n n n 个系数是 A A A n n n 个特征值
   ⟺    \iff A A A 的特征值全为非负

推论:满秩半正定矩阵为正定矩阵。

证: n n n 阶满秩半正定矩阵 A A A,其特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn,有
λ 1 λ 2 ⋯ λ n = ∣ A ∣ \lambda_1\lambda_2\cdots\lambda_n=|A| λ1λ2λn=A
由于满秩矩阵为可逆矩阵,所以 λ i ≠ 0   ( i = 1 , 2 , . . . , n ) \lambda_i\neq0\ (i=1,2,...,n) λi=0 (i=1,2,...,n);又半正定矩阵的特征值全为非负, 得 A A A 的特征值全为正,即证得 A A A 为正定矩阵。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值