pytorch 图像分类器

'''训练一个图像分类器'''
# 我们将按次序的做如下几步:
# 使用torchvision加载并且归一化CIFAR10的训练和测试数据集
# 定义一个卷积神经网络
# 定义一个损失函数
# 在训练样本数据上训练网络
# 在测试样本数据上测试网络
# 加载并归一化 CIFAR10 使用 torchvision ,用它来加载 CIFAR10 数据非常简单。
import torch
import torchvision
import torchvision.transforms as transforms

# torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。
transform = transforms.Compose(
    [transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=0) #num_workers多线程
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

    
# 展示其中的一些训练图片。
import matplotlib.pyplot as plt
import numpy as np

# functions to show an image

def imshow(img):
    img = img / 2 * 0.5 # unnormalize 
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# for j in range(4):
#     imshow(images[j])
# print labels
print('labels.size(): ',labels.size())
print( labels[1].item())
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

# 定义一个卷积神经网络 在这之前先 从神经网络章节 复制神经网络,并修改它为3通道的图片(在此之前它被定义为1通道)
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16*5*5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
# 定义一个损失函数和优化器 让我们使用分类交叉熵Cross-Entropy 作损失函数,动量SGD做优化器。
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练网络 这里事情开始变得有趣,我们只需要在数据迭代器上循环传给网络和优化器 输入就可以。
for epoch in range(2):  # loop over the dataset multiple times
    running_loss = 0.0
    for i, data, in enumerate(trainloader, 0):
        # get the inputs
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:  # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0
print('Finished training')
            
# 在测试集上测试网络 我们已经通过训练数据集对网络进行了2次训练,但是我们需要检查网络是否已经学到了东西。
# 我们将用神经网络的输出作为预测的类标来检查网络的预测性能,用样本的真实类标来校对。如果预测是正确的,我们将样本添加到正确预测的列表里。
# 好的,第一步,让我们从测试集中显示一张图像来熟悉它。

# 现在让我们看看 神经网络认为这些样本应该预测成什么:
outputs = net(images)
# 输出是预测与十个类的近似程度,与某一个类的近似程度越高,网络就越认为图像是属于这一类别。所以让我们打印其中最相似类别类标:
_, predicted = torch.max(outputs, 1) #在第1个维度上比大小
print('Predicted:', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))

# 结果看起开非常好,让我们看看网络在整个数据集上的表现。
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1) #在第1个维度上比大小
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))

# 这看起来比随机预测要好,随机预测的准确率为10%(随机预测出为10类中的哪一类)。看来网络学到了东西。
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
t = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        if t == 0: print('predicted == labels:',predicted == labels)
        c = (predicted == labels).squeeze()
        if t == 0: print('(predicted == labels).squeeze():',c)
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1
        t = t + 1
for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100*class_correct[i] / class_total[i]))
    
# 所以接下来呢?
# 我们怎么在GPU上跑这些神经网络?
# 在GPU上训练 就像你怎么把一个张量转移到GPU上一样,你要将神经网络转到GPU上。 如果CUDA可以用,让我们首先定义下我们的设备为第一个可见的cuda设备。
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Assume that we are on a CUDA machine, then this should print a CUDA device:
print(device)
# 本节剩余部分都会假定设备就是台CUDA设备。
# 接着这些方法会递归地遍历所有模块,并将它们的参数和缓冲器转换为CUDA张量。
net.to(device)
# 记住你也必须在每一个步骤向GPU发送输入和目标:
inputs, labels = inputs.to(device), labels.to(device)
# 为什么没有注意到与CPU相比巨大的加速?因为你的网络非常小。


结果:
Files already downloaded and verified
Files already downloaded and verified
labels.size():  torch.Size([4])
3
 ship   cat  frog truck
[1,  2000] loss: 2.235
[1,  4000] loss: 1.902
[1,  6000] loss: 1.712
[1,  8000] loss: 1.619
[1, 10000] loss: 1.535
[1, 12000] loss: 1.486
[2,  2000] loss: 1.390
[2,  4000] loss: 1.388
[2,  6000] loss: 1.331
[2,  8000] loss: 1.336
[2, 10000] loss: 1.305
[2, 12000] loss: 1.301
Finished training
Predicted: plane   dog  bird truck
Accuracy of the network on the 10000 test images: 54 %
predicted == labels: tensor([ True,  True, False, False])
(predicted == labels).squeeze(): tensor([ True,  True, False, False])
Accuracy of plane : 43 %
Accuracy of   car : 75 %
Accuracy of  bird : 41 %
Accuracy of   cat : 34 %
Accuracy of  deer : 47 %
Accuracy of   dog : 60 %
Accuracy of  frog : 48 %
Accuracy of horse : 55 %
Accuracy of  ship : 74 %
Accuracy of truck : 61 %
cpu

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值