计算机视觉
KevinIceFire
走在路上,跑起来。
展开
-
计算机国际会议 ECCV CVPR ICCV
ICCV的全称是International Comference on Computer Vision,正如很多和他一样的名字的会议一行,这样最朴实的名字的会议,通常也是这方面最nb的会议。ICCV两年一次,与ECCV正好错开,是公认的三个会议中级别最高的。它的举办地方会在世界各地选,上次是在北京,下次在巴西,2009在日本。iccv上的文章看起来一般都比较好懂,我是比较喜欢的。转载 2013-11-24 18:38:23 · 2580 阅读 · 2 评论 -
图像处理和计算机视觉中的经典论文
感谢水木上同领域的同学分享,有了他的整理,让我很方便的获得了CV方面相关的经典论文,我也顺便整理一下,把pdf中的文字贴到网页上,方便其它人更直观的获取所要内容~~~ 资料的下载链接为: http://iask.sina.com.cn/u/2252291285/ish?folderid=775855 以下为该同学的整理的综述:“前言:最近由于工作转载 2013-12-31 13:13:16 · 1157 阅读 · 0 评论 -
Harr-like feature-Harr-like特征详解
1. Haar-like特征,即很多人常说的Haar特征,是计算机视觉领域一种常用的特征描述算子。它最早是由Papageorigiou等人用于人脸描述。目前常用的Haar-like特征可以分为三类:线性特征、边缘特征、点特征(中心特征)、对角线特征。如下图所示:显然,边缘特征有4种:x方向,y方向,x倾斜方向,y倾斜方向;线特征有8种,点特征有2种,对角线特征有1种。每转载 2013-12-26 15:38:31 · 4680 阅读 · 0 评论 -
关于人脸检测中的Haar特征提取
关于人脸检测中的Haar特征提取AdaBoost人脸检测训练算法速度很重要的两方面是特征选取和特征计算。选取的特征为矩特征为Haar特征,计算的方法为积分图。(1)Haar特征: Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。在确定了特征形式后 Harr-转载 2013-12-26 16:23:29 · 1044 阅读 · 0 评论 -
SIFT/SURF、haar特征、广义hough变换的特性对比分析
SIFT/SURF、haar特征、广义hough变换的特性对比分析SIFT/SURF基于灰度图,一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT转载 2013-12-26 16:01:27 · 917 阅读 · 0 评论 -
AdaBoost人脸检测原理
AdaBoost人脸检测原理对人脸检测的研究最初可以追溯到 20 世纪 70 年代,早期的研究主要致力于模板匹配、子空间方法,变形模板匹配等。近期人脸检测的研究主要集中在基于数据驱动的学习方法,如统计模型方法,神经网络学习方法,统计知识理论和支持向量机方法,基于马尔可夫随机域的方法,以及基于肤色的人脸检测。目前在实际中应用的人脸检测方法多为基于Adaboost学习算法的方法。转载 2013-12-26 17:08:48 · 1968 阅读 · 0 评论 -
True Positive,True Negative,False Positive and False Negative
在做基于视觉的目标检测的过程中,这四个概念总也记不住,每次都要上网现查一下,干脆现在就放在这里,免得每次找的都很麻烦。表示分类正确:True Positive:本来是正样例,分类成正样例。True Negative:本来是负样例,分类成负样例。表示分类错误:False Positive :本来是负样例,分类成正样例,通常叫误报。False Negative:本来是正转载 2013-12-27 11:06:52 · 1152 阅读 · 0 评论