【论文笔记】NeRF == UCB == ECCV‘2020

蓝色
紫色
红色

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Author From :

在这里插入图片描述

学习链接:辐射神经场算法——Wild-NeRF / Mipi-NeRF / BARF / NSVF / Semantic-NeRF / DSNeRF

理解场的概念&【NeRF】背景、改进、应用与发展

从NeRF -> GRAF -> GIRAFFE,2021 CVPR Best Paper诞生记

Abstract

本文提出了一种最先进的利用稀疏输入视角图片合成复杂场景新视角的方法,该方法通过优化基本连续的 体渲染函数 来实现。本文算法的场景表示通过一个全连接网络来实现,输入是一个简单的连续5D坐标(空间位置:(x,y,z),观察方向:(θ,Φ)),输出体密度和该空点在相关视角的发出光线上的颜色。本文通过查询沿着相机发出光线的5D坐标并通过传统的体渲染技术将输出的颜色和透明度投影到图像中。由于体渲染函数是 自然可微 的,优化我们的表示方法的唯一需要的输入是一组已知相机位姿的图像。

场景的隐式表达

参考学习:旷视 CV Master 基于神经网络的3D重建

在这里插入图片描述

体渲染

在这里插入图片描述

通过采样实现积分的离散化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

计图可微渲染新视角生成赛讲解

在这里插入图片描述

NeRF存在的问题

  1. 性能较差
  2. 训练代价大,通常需要训练几天甚至一周
  3. 渲染速度较慢,渲染一张800*800的图像需要大概30s
  4. 对高光、半透明材质的渲染效果较差
  5. 对复杂几何的拓展性较差,例如围巾等针织结构
  6. 对原场景三维几何的恢复效果较差,常出现渲染图像质量高但恢复几何质量低的情况【因为它同时估计了RGB和σ,可以通过一个bias调整,如果单独把σ取出来可能并不那么好】

一些思考

学习链接:NeRF系列公开课07 | 在非理想输入下NeRF的重建

取得成功的原因: positional encoding & hierachicle sampling 这些trick使得重建效果非常好
渲染过程简单,可复现性强 【体现在loss的计算和反向传播上(自然可微的)】

【补充】不足:仅能拟合建模单个场景、几乎不可编辑、对输入图像有要求

重建NeRF所需要的输入图片要求

  • 曝光相同
  • 图片清晰无模糊,噪声
  • 数量通常>15张
  • 图片大概在同一尺度上
  • 需要能得到正确相机标定数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值