【论文笔记】BA-NeRF == CMU == ICCV‘2021

蓝色
紫色
红色

BARF: Bundle-Adjusting Neural Radiance Fields

Author From:

在这里插入图片描述

Abstract

NeRF的缺点之一是需要 准确的相机位姿 来学习场景表示。本文提出了BA-NeRF,可以使用不完美(甚至未知)的相机位姿来训练NeRF(联合解决3D场景表示和相机帧对齐)。本文联系了经典的图像对齐理论,并表明 从粗到精的对齐方法 也适用于NeRF。并且,如果使用位置编码对于合成图像的对齐是不利的。在合成数据和真实数据上的实验表明,BA-NeRF可以同时 有效优化场景表示和解决大的相机位姿偏移 。这使得从未知相机位姿进行视频序列的视图合成和定位成为可能,为视觉定位系统(例如SLAM)和密集3D映射和重建的潜在应用开辟了新的途径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值