数组-最大子序列(分治,动态规划)

给定一个整数数组,寻找具有最大和的连续子数组。本文通过动态规划和分治法两种策略进行求解,动态规划优化空间复杂度,分治法将问题拆解为三部分并递归求解。
摘要由CSDN通过智能技术生成

题目

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

思路

  1. 暴力破解(超时)
    穷举所有子空间,然后求和取最大值。

代码

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        res = nums[0]
        for i in range(0,n):
            sums 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值