11.SimplePIR
全称:One Server for the Price of Two:Simple and Fast Single-Server Private Information Retrieval
期刊:Usenix Security Symposium (USENIX Security)——网络安全领域四大最高级别的国际学术会议之一
一、介绍
这篇论文旨在实现高效的单服务器隐私信息检索(PIR)方案,以解决在保护用户隐私的同时快速检索数据库的问题。为了实现这一目标,论文提出了两种新的PIR方案:SimplePIR和DoublePIR。这两种方案的实现基于学习与错误假设,并在保持高吞吐量的同时显著降低了客户端的通信成本。SimplePIR实现了每核心10 GB/s的服务器吞吐量,接近内存带宽,但需要客户端下载一个相对较大的“提示”。DoublePIR方案通过递归地使用SimplePIR,以更低的通信成本获取所需的数据库记录。这些方案的突破点在于在保持高吞吐量的同时,显著降低了客户端的通信成本,填补了单服务器PIR方案设计空间中的一些空白。通过这些创新,论文为单服务器PIR方案的设计和实现提供了新的思路和解决方案。
本文中很有价值的观点总结:
1.定义了一种新型的匿踪查询对比方式:数据库大小/响应时间/core。时间相同比较支持的数据库的大小。
2.指出一个很严重的问题:通过长久保持的密钥生成的query是不安全的,与sealPIR类似的匿踪查询存在不安全性。
3.首个基于LWE问题的匿踪查询。
二、背景知识
1.Learning with errors (LWE)
是一种基于格的加密技术,它是一种在计算上难以解决的问题。LWE问题的基本形式是:给定一个由n个向量组成的矩阵A和一个向量b,以及一个小的误差向量e,找到一个向量s,使得As+e=b。LWE问题的难度在于,对于给定的A和b,找到s是困难的,因为误差向量e是随机的。LWE问题是一种基础的加密原语,可以用于构建各种加密方案,包括私有信息检索(PIR)方案。在本文中,SimplePIR方案的安全性基于LWE假设,即LWE问题的解决难度足以保证SimplePIR方案的安全性。在文字提及到(𝑛, 𝑞, 𝜒)-LWE,解释一下:𝑛代表向量的维度,𝑞代表整数模数,𝜒代表误差分布。因此,(𝑛, 𝑞, 𝜒)-LWE问题描述了在给定向量维度𝑛、整数模数𝑞和误差分布𝜒的情况下,解决Learning with errors (LWE)问题的难度。这种参数化的LWE问题在密码学中具有重要意义,因为不同的参数取值可以导致不同难度的LWE问题,从而影响基于LWE问题构建的加密方案的安全性。因此,对于给定的𝑛、𝑞和𝜒,(𝑛, 𝑞, 𝜒)-LWE问题的难度可以用来评估基于LWE假设的加密方案的安全性
Secret-key Regev encryption:是一种基于LWE假设的加密方案,由Regev在2005年提出。该方案的安全性基于LWE问题的困难性,即在给定矩阵A和向量b的情况下,找到向量s是困难的,其中b是由A和s的点积加上一个小的误差向量e得到的。Secret-key Regev encryption方案的基本思想是将明文编码为一个向量,并将其与一个随机向量的点积加上一个小的误差向量,然后将其加密。具体来说:
LWE问题如下,已知A和r无法解密获得s。
Regev encryption:基于LWE的加密方式,µ为0,1向量,e<<[q/p],q为密文域,p为明文域。