Linear Regression

Loss Function

  • 理论基础:中心极限定理
    • 误差符合高斯分布

这里写图片描述
- 公式推导
这里写图片描述
这里写图片描述
解释了为什么损失函数是这个形式

模型求解

意义:理论上推导出模型可解,但对矩阵求导,计算量很大,实际不采用

对目标函数求梯度
这里写图片描述

使梯度为0
这里写图片描述

为什么能添加扰动能防过拟合?

通过实践可得,当n维特征向量映射成更高维的特征时,最后求解得到的参数值都很大,因此希望在原loss function基础上添加关于参数的项,来作为对模型复杂度的惩罚
这里写图片描述

为什么加了扰动后一定可逆?

这里写图片描述

对新的目标函数求梯度

这里写图片描述

复杂度惩罚因子

LASSO:
- L2-norm:性能往往不错,但没有特征选择功能
- L1-norm:高阶系数接近于0,相当于进行了特征选择
- Elastic Net:L1-norm与L2-norm融合

感性解释:从实验出发,跑代码,当过拟合发生时,其系数很大,因此想把其系数也作为损失函数的一部分

帮助理解的解释:
拉格朗日乘子法,推导出L1-norm的形式
这里写图片描述

广义逆矩阵(伪逆)

这里写图片描述
这里写图片描述

模型优化

  • 批量梯度下降算法
    这里写图片描述
  • 随机梯度下降算法:支持在线学习
    这里写图片描述
  • mini-batch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值