F.鸡数题!(2024牛客寒假训练营)

思路解析:

条件四中若将a_{i}a_{j}(i!=j)看作二进制的话,那么他们相&等于0意味着相应的二进制位不能全为一

条件三中2^{n}-1转化为二进制后为111111...(n个),结合条件四及条件一二来考虑的话题目的要求就是将n个不同的1分配给m个格子里,问有多少种分法,形象一点来说就是把n个不同的球分配到m个相同的盒子里,不能有空盒子(即条件一),有多少种分法?

举个简单的例子:

假设n=3,m=2,将3个1分到2个格子里,注意每个1都是不同的,假设三个1的代号分别为a,b,c,则可以有{a,{b,c}},{b,{a,c}},{c,{a,b}}三种分法,即a1,a2可以分别为{001,110},{010,101},{011,100}三种情况

题目本质来说就是求第二类Stirling数

第二类Stirling数的通项公式为:

观察通项公式最右边部分,分子假设为a,分母假设为b,计算过程需要求a除以b然后对1e9+7(假设为m)取模,这里a和b都是很大的数,容易溢出,导致取模错误。用逆可以避免除法计算,设b的逆元为b^{-1},有:

(a/b)mod m=( (a/b) mod m )( (bb^{-1}) mod m )=(a/b \times bb^{-1}) mod m = (ab^{-1}) mod m

=(a mod m)(b^{-1} mod m) mod m

b^{-1}可以通过费马小定理来求。

废话不多说,代码如下:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using T = pair<int, int>;
//set<int>S;
//unordered_map<int, int>mp;
const int N = 1e5 + 10;
const ll mod = 1e9 + 7;
ll f[N];
//快速幂求a^n
ll fastPow(ll a, ll n, ll mod) {
	ll ans = 1;
	a %= mod;
	while (n) {
		if (n & 1)ans = (ans * a) % mod;
		a = (a * a) % mod;
		n >>= 1;
	}
	return ans;
}
//费马小定理求a模mod的逆
ll mod_inverse(ll a, ll mod) {
	return fastPow(a, mod - 2, mod);
}
//阶乘预处理
void init_fac() {
	f[0] = 1;
	f[1] = 1;
	ll i=2;
	for (; i <= 100000; ++i) {
		f[i] = (f[i - 1] * i) % mod;
	}
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
	ll n, m; cin >> n >> m;
	if (n < m) {
		cout << 0 << endl;
		return 0;
	}
	ll i;
	init_fac();
	ll ans{};
	for (i = 0; i <= m; ++i) {
		if ((m - i) & 1) {
			ans += (-1 * fastPow(i, n,mod))* mod_inverse(f[i]*f[m-i],mod);
			ans %= mod;
		}
		else {
			ans += (fastPow(i, n,mod)) * mod_inverse(f[i] * f[m - i], mod);
			ans %= mod;
		}
	}
	cout << ans;
	return 0;
}

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值