161. One Edit Distance

https://leetcode.com/problems/one-edit-distance/description/

Given two strings s and t, determine if they are both one edit distance apart.

Note: 

There are 3 possiblities to satisify one edit distance apart:

  1. Insert a character into s to get t
  2. Delete a character from s to get t
  3. Replace a character of s to get t

Example 1:

Input: s = "ab", t = "acb"
Output: true
Explanation: We can insert 'c' into s to get t.

Example 2:

Input: s = "cab", t = "ad"
Output: false
Explanation: We cannot get t from s by only one step.

Example 3:

Input: s = "1203", t = "1213"
Output: true
Explanation: We can replace '0' with '1' to get t.
class Solution(object):
    def isOneEditDistance(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: bool
        """
        def judge(s1, s2):
            length = len(s2)
            isChange = False
            i, j = 0, 0
            while j < length:
                if s1[i] == s2[j]:
                    i += 1
                    j += 1
                elif not isChange:
                    i += 1
                    isChange = True
                else:
                    return False
            return True
        
        isChange = False
        len_s = len(s)
        len_t = len(t)
        
        if len_s - len_t > 1 or len_t - len_s > 1:
            return False
        if len_s == len_t:
            for i in range(len_s):
                if s[i] != t[i] and not isChange:
                    isChange = True
                elif s[i] != t[i]:
                    return False
            return isChange
        elif len_s > len_t and len_t > 0:
            return judge(s, t)
        elif len_t > len_s and len_s > 0:
            return judge(t, s)
        return True
            

 

Sure, here's the implementation of the `feline_fixes` function in Python: ```python def feline_fixes(start, goal): m, n = len(start), len(goal) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): dp[i][0] = i for j in range(n + 1): dp[0][j] = j for i in range(1, m + 1): for j in range(1, n + 1): if start[i - 1] == goal[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = 1 + min(dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]) return dp[m][n] ``` This function uses dynamic programming to solve the problem. The `dp` matrix is initialized with 0s, and the first row and column are filled with the distances between the empty string and the prefixes of the start and goal words. Then, the matrix is filled in row-major order using the following recurrence: - If the i-th character of start is equal to the j-th character of goal, then the distance between the prefixes of length i and j is the same as the distance between the prefixes of length i-1 and j-1. - Otherwise, we can transform the prefix of start into the prefix of goal using one of three operations: substitution (if we replace the i-th character of start with the j-th character of goal), deletion (if we delete the i-th character of start), or insertion (if we insert the j-th character of goal after the i-th character of start). We take the minimum of the costs of these three operations plus 1 (to account for the current mismatch) to get the distance between the prefixes of length i and j. Finally, the function returns the value in the bottom-right corner of the matrix, which represents the distance between the entire start and goal words.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值