Deeplabv3+安装并运行自己的数据集

论文:https://arxiv.org/pdf/1802.02611.pdf

源码:https://github.com/tensorflow/models/tree/master/research/deeplab

环境:ubuntu16.04 + cuda9.0 + cudnn7.6 + tensorflow-gpu1.11

cuda9.0 + cudnn7.6安装配置可参照:https://blog.csdn.net/wgshun616/article/details/81019182

多个版本cuda安装切换可参照:https://blog.csdn.net/yinxingtianxia/article/details/80462892

// 查看GPU型号
lspci | grep -i nvidia
// 查看NVIDIA驱动版本
sudo dpkg --list | grep nvidia-*
// 查看CUDA版本,需一致
cat /usr/local/cuda/version.txt
nvcc -V
// 查看CUDNN版本
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

deeplabv3+依赖库安装参照:https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/installation.md 

安装tensorflow-gpu时输入:

pip install tensorflow-gpu==1.11

记得在gedit ~/.bashrc配置文件中加入:

export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

运行网上数据集过程请参照:https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/pascal.md

运行自己数据集:

1. 建立数据集

先在datasets目录下建立如下目录结构:

+ pascal_voc_seg
  + VOCdevkit
    + VOC2012
      + JPEGImages
      + SegmentationClass
      + ImageSets
        + Mai
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值