Git

Git基础(本地)

安装

地址:https://git-scm.com/book/en/v2
设置最小配置:

$ git config --global user.name author #将用户名设为author
$ git config --global user.email author@corpmail.com #将用户邮箱设为author@corpmail.com

config作用域:

$ git config --local    //local只对某个仓库有效,缺省为local
$ git config --global  //glodal对当前用户所有仓库有效
$ git config --system  //glodal对系统所有登录的用户有效

显示config的配置,加 --list

 $ git config --list --local  
 $ git config --list --global  
 $ git config --list --system

建Git仓库

已有的项目代码纳入Git管理

$ cd 项目代码所在文件夹
$ git init

新建的项目直接使用Git管理

$ cd 某个文件夹
$ git init your_project
$ cd your_project

工作区和暂存区

$ git status            //查看状态
$ git add 文件名         //提交到暂存区
$ git add -u            //批量提交更新到暂存区
$ git commit -m '日志'   //提交到本地库
$ git reset --hard        //版本回退,慎用!!!
$ git mv readme readme.md   //变更文件名

常用命令

查看版本历史

 $ git log       
 $ git log --oneline  //显示单行
 $ git log --n4 //最近几条
 $ git log --all    //所有分支
 $ git log --all --graph    //图形化
 $ git log --all --graph  -n4 --oneline

显示图形化界面

$ gitk

查看git仓库对象

$ git cat-file -t hash值   //查看类型
$ git cat-file -p hash值   //查看内容

分支

$ git branch -av //查看分支
$ git branch -d  分支名  //删除本地分支
$ git branch -D 分支名  //删除本地分支

注:

  1. -d是–delete的缩写,在使用–delete删除分支时,该分支必须完全和它的上游分支merge完成(了解上游分支,可以点击查看链接),如果没有上游分支,必须要和HEAD完全merge

  2. -D是–delete --force的缩写,这样写可以在不检查merge状态的情况下删除分支

  3. –force简写-f,作用是将当前branch重置到初始点(startpoint),如果不使用–force的话,git分支无法修改一个已经存在的分支.

整理commit

修改最新一次commit message
$ git commit --amend
修改老旧的commit message
$ git rebase -i commit上级ID     //变基 原理:HEAD指针分离
把连续多个commit合并一个commit
$ git rebase -i commitID  
# 进入交互界面 。修改内容( s )
#退出: 添加message
把间隔多个commit合并一个commit
$ git rebase -i commitID  
# 进入交互界面 。修改内容( s )    
#退出: 添加message

.git目录

  1. HEAD 文件 git仓库的当前工作分支
  2. config 文件 git配置信息
  3. refs (类型commit)
    heads 分支
    tags 里程碑
  4. objects (类型tree)
    xx (类型blob)
    pack 打包

commit/tree/blob关系

commit/tree/blob关系

分离头指针

变更没有基于branch,在切换分支时,基于HEAD的commit,可能会被git基于垃圾清除
,如果你认为改commit是重要的,切记将改commit与某个分支绑定。

HEAD与brand区别

比较两次版本间的差异

$ git diff xxx yyy   
$ git diff HEAD HEAD^1  //比较HEAD与其父的差异 (HEAD^1^1  HEAD父亲的父亲 等同于 HEAD~2)

HEAD和暂存区所含文件的差异

$ git diff --cached

工作区和暂存区所含文件的差异

  $ git diff
  $ git diff -- 文件名  //某个文件的差异

不同提交的指定文件的差异

$ git diff temp master -- index.html
$ git diff xxx yyy -- index.html

暂存区恢复成和HEAD一样

$ git reset HEAD   //清空暂存区

取消暂存区部分文件更改

$ git reset HEAD -- 暂存区文件名称

工作区恢复成和暂存区一样

$ git checkout -- 暂存区文件名称

清除最近几次提交

$ git reset --hard 回滚到commit指针   //慎用!!!

删除文件

$ git rm 删除文件名
等价于下面两步
rm 删除文件名
$ git rm 删除文件名

开发中加塞紧急任务

$ git stash   //储藏
$ git stash list //列出储藏列表
#开发
#开发完成
$ git stash apply   //弹出但不清空储藏
$ git stash pop   //弹出但清空储藏
$ git stash drop //清空储藏

指定不需要Git管理的文件

#创建 .gitignore文件
doc
doc/
*.doc/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
健身国际俱乐部系统是一种专为健身俱乐部设计的管理软件,它通过集成多种功能来提高俱乐部的运营效率和服务质量。这类系统通常包含以下几个核心模块: 1. **会员管理**:系统能够记录会员的基本信息、会籍状态、健身历史和偏好,以及会员卡的使用情况。通过会员管理,俱乐部可以更好地了解会员需求,提供个性化服务,并提高会员满意度和忠诚度。 2. **课程预约**:会员可以通过系统预约健身课程,系统会提供课程时间、教练、地点等详细信息,并允许会员根据个人时间表进行预约。这有助于俱乐部合理安排课程,避免资源浪费。 3. **教练管理**:系统可以管理教练的个人信息、课程安排、会员反馈等,帮助俱乐部评估教练表现,优化教练团队。 4. **财务管理**:包括会员卡销售、课程费用、私教费用等财务活动的记录和管理,确保俱乐部的财务透明度和准确性。 5. **库存管理**:对于俱乐部内的商品销售,如健身装备、营养补充品等,系统能够进行库存管理,包括进货、销售、库存盘点等。 6. **数据分析**:系统能够收集和分析会员活动数据,为俱乐部提供业务洞察,帮助俱乐部制定更有效的营销策略和业务决策。 7. **在线互动**:一些系统还提供在线平台,让会员可以查看课程、预约私教、参与社区讨论等,增强会员之间的互动和俱乐部的社区感。 8. **移动应用**:随着移动设备的普及,一些健身俱乐部系统还提供移动应用,方便会员随时随地管理自己的健身计划。 9. **安全性**:系统会确保所有会员信息的安全,采取适当的数据加密和安全措施,保护会员隐私。 10. **可扩展性**:随着俱乐部业务的扩展,系统应该能够轻松添加新的功能和服务,以适应不断变化的市场需求。 健身国际俱乐部系统的选择和实施,需要考虑俱乐部的具体需求、预算和技术能力,以确保系统能够有效地支持俱乐部的运营和发展。通过这些系统的实施,健身俱乐部能够提供更加专业和高效的服务,吸引和保留更多的会员,从而在竞争激烈的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值