POJ 1305 Fermat vs. Pythagoras

题意:求n内本原毕达哥拉斯三元组的组数,以及n内没有被毕达哥拉斯数涉及到数的个数。

名词解释:

       毕达哥拉斯三元组:又名勾股定理

       本原的毕达哥拉斯三元组:

       指如果一个毕达哥拉斯三元组x,y,z 满足GCD(x,y,z)=1,那么这个毕达哥拉斯三元组称为本原的

定理: 正整数x,y,z构成一个本原毕达哥拉斯三元组且y为偶数,当且仅当存在互素的正整数m,n(m>n),其中m为奇数n为偶数,或者m为偶数n为奇数 并且满足  x=m*m-n*n,   y=2*m*n,     z=m*m+n*n  。 


解题思路:利用上式求出所给范围内的本原毕达哥拉斯三元组数,只需枚举m,n即可,然后将三元组乘以i(保证i*z<=n),就可以求出所有的毕达哥拉斯三元组。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
using namespace std;
#define  N 1000005
int  flag[N];
int ans1=0;
int ans2=0;

int  gcd(int x,int y)
{
    return y==0?x:gcd(y,x%y);
}
void solve(int xx)
{
    ans1=0;
    ans2=0;
    memset(flag,0,sizeof(flag));
    int temp=(int)sqrt(xx*1.0);
    for(int i=1;i<=temp;i++)
    {
        for(int j=i+1;j<=temp;j++)
        {
            if(i*i+j*j>xx)  break;
            if((i%2)!=(j%2))
            {
                if(gcd(i,j)==1)
                {
                      int  x=j*j-i*i;
                      int  y=2*i*j;
                      int  z=i*i+j*j;
                      ans1++;
                      int k;
                      for(k=1;;k++)
                      {
                          if(k*z>xx)  break;
                          flag[k*x]=1;
                          flag[k*y]=1;
                          flag[k*z]=1;
                      }


                }
            }
        }
    }
    for(int i=1;i<=xx;i++)
    {
        if(!flag[i]) ans2++;
    }
}


int  main()
{
    int n;
    while(~scanf("%d",&n))
    {
        solve(n);
        printf("%d %d\n",ans1,ans2);
    }
    return 0;
}
PS:其实纯暴力也是可以解决的,,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值