3d向量可以乘以一个3*3的MATRICS 来实现变换,这种变换不可以改变坐标原点,但可以改变一个物体的形状,长度,角度,面积,体积。
下面几个是MATRICS的属性:
- MATRICS的每一行可以解释成新坐标系统中的X,Y,Z向量坐标。
- MATRICS乘以0向量,仍然为0,所以通过乘以一个MATRICS 来实现的变换不会改变原点。
本文深入探讨了3D向量如何通过3×3矩阵进行变换,阐述了变换对形状、长度、角度、面积和体积的影响,同时解析了矩阵的属性及其在变换过程中的作用。
3d向量可以乘以一个3*3的MATRICS 来实现变换,这种变换不可以改变坐标原点,但可以改变一个物体的形状,长度,角度,面积,体积。
下面几个是MATRICS的属性:
您可能感兴趣的与本文相关的镜像
Python3.10
Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本
5082

被折叠的 条评论
为什么被折叠?