R语言-高效处理多个数据集(Reduce-向量化操作)

本文深入探讨了R语言中Reduce函数的应用,展示了如何利用该函数高效处理多个数据集的交集,介绍了函数的定义及参数,包括f(操作函数)、x(向量或列表)、init(初始化值)、right(方向标志)和accumulate(积累标志),并通过实例说明了Reduce函数的使用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Reduce向量化操作

前言

    想到这个函数,是因为希望同时处理多个数据集的交集。如果按照常规的方法就是两两交集,直到最后全部完成。但是,想着应该有类似“do.call”的函数(此函数多用于多个数据框的合并,感兴趣的可以比较一下)。于是看到了 Reduce 函数。现介绍如下。

定义

Reduce(f, x, init, right = FALSE, accumulate = FALSE)

参数

  • f:一个含有两个参数的函数,可以是自定义的,也可以是R语言内置的操作符(比如,+,-,*等)
# 其余为默认参数,仅展示如何使用 ‘f’ 参数
> x <- 1:5
> Reduce("+", x)
[1] 15
> Reduce(function(a, b){a*2+b}, x)
[1] 57

注: 这是大家可能疑惑了,怎么来的?其计算过程中是先取前两个元素执行 function 操作,然后负值给 function 中的第一个参数,再从数据集中取第三个数据复制给 function 第二个参数,如此反复。。。(还是直观点吧,如下)
Reduce

  • x:一个向量或列表
> ## 定义三个数据框
> df1 <- data.frame(id=c(1,2,3),name=c('Joseph','Summer','dograbbit'))
> df2 <- data.frame(id=c(1,2),money=c('0','100'))
> df3 <- data.frame(id=c(1,3),looking=c('handsom','cute'))
> ## Reduce
> Reduce(function(x,y) merge(x,y,by="id",all.x=TRUE),list(df1,df2,df3),accumulate =FALSE)
  id      name money looking
1  1    Joseph     0 handsom
2  2    Summer   100    <NA>
3  3 dograbbit  <NA>    cute
  • init:初始化值(与 x 中元素具有相同的数据类型)
> Reduce("+", x)
[1] 15
> Reduce("+", x, init = 10)
[1] 25
  • right:是从左往右,还是从右往左 (默认FALSE)
> Reduce("+", x, init = 10, right = FALSE, accumulate = TRUE)
[1] 10 11 13 16 20 25
> Reduce("+", x, init = 10, right = TRUE, accumulate = TRUE)
[1] 25 24 22 19 15 10
  • accumulate:是否保留计算过程 (默认false)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值