数学
文章平均质量分 77
Xiaofei@IDO
这个作者很懒,什么都没留下…
展开
-
无监督的一致性聚类(consensus)的通俗理解
一、背景介绍当我们听到一致性聚类的时候,有时候我们会认为这是一种聚类方法。如果您也这样想的话,那就完全入坑了。下面我们来说一下,什么是一致性聚类(consensus)?聚类的算法有许多,比如划分式聚类(k-means),基于密度的聚类算法(DBSCAN, OPTICS),层次聚类算法等,这些的方法的实现还是相对较为容易的(毕竟有数学公式推导,相信只要能看懂数学公式,实现都不是问题),那么主要的问题是什么呢? 在于如何选择合适的参数从而得到最优的分类(最优包括稳定的,有意义的分类结果)。稳定的分类是原创 2021-12-29 20:53:06 · 10968 阅读 · 1 评论 -
NMF通俗理解及python实现
一、通俗理解概念NMF(Non-negative matrix factorization),即对于任意给定的一个非负矩阵 V,其能够寻找到一个非负矩阵 W 和一个非负矩阵 H,满足条件 V=W×HV=W \times HV=W×H,即将一个非负的矩阵分解为左右两个非负矩阵的乘积。V=W×HV = W \times HV=W×H其中,V矩阵中每一列代表一个观测(observation),每一行代表一个特征(feature);W矩阵称为基矩阵或特征的权重矩阵,代表每个特征对聚类结果的贡献度;H矩原创 2021-12-29 10:19:20 · 5879 阅读 · 0 评论 -
Cochran-Armitag (CAT)趋势检验在关联分析中的应用
1. 概述Cochran-Armitage trend test,简称为CAT趋势检验,是由William Cochran和Peter Armitage提出的一种分析两个分类变量关联性的检验方法,区别于卡方检验,该方法要求其中一个分类变量必须只有两个类别,另外一个变量则是一个有序的分类变量。简而言之,该方法适用于处理 2 x K 的分类数据,这里的K是一个有序变量, K最小值为3。该方法用来探究有序变量在各组中的发生率和对应的排序之间是否存在线性关系,有点类似逻辑回归。2. 示例下原创 2021-06-12 10:44:19 · 5487 阅读 · 1 评论 -
置换检验
一、置换检验显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那个均值更大)。我们在实验中经常会因为各种问题(时间、经费、人力、物力)得到一些小样本结果,如果我们想知道这些小样本结果的总体是什么样子的,就需要用到置换检验。Permutation test 置换检验是Fisher于20世纪30年代提出的一种基于大量计算(computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对原创 2021-04-06 21:04:31 · 1045 阅读 · 0 评论 -
overlap的显著性检验-超几何检验/Fisher`s 检验
1. 回顾超几何分布的定义一般地,假设共有N件产品,其中M件次品,现在从中抽取n件做检查,抽到k件次品的概率分布服从超几何分布。数学表达式如下:超几何分布的一个应用:求解overlap显著性以一个实际的生物实验为例。在上述实验中,我们假设总共的基因个数为20000个(假定为产品的总数),图中左边圈的总数为2005(1740+265)个(假定为次品的总个数),现从中抽取805(540+265)个,需要计算得到基因的个数(次品数量)大于等于265的概率。# 用R语言计算为:phyper(2原创 2020-12-22 22:08:39 · 3110 阅读 · 1 评论 -
Markdown 公式编辑
Markdown 公式编辑前言1. 常见运算符2. 上下标3. 希腊字符大小写4. 常见表达式运算符5. 分数6. 括号7. 开根号8. 方程组9. 矩阵10. 数学公式对齐前言Markdown支持LaTex语法的数学表达式。下面简单介绍一些常用的表达式语法。在行内使用LaTex表达式语法时,使用两个单‘$’符;在单独成段中,可以用两个双‘$$’。1. 常见运算符运算符表达式运算符表达式运算符表达式±\pm±\pm×\times×\times÷\div÷\di原创 2020-06-28 10:14:08 · 280 阅读 · 0 评论 -
基本矩阵运算法则之笔记
矩阵运算0. 定义1. 矩阵加法法则2. 数与矩阵相乘3. 矩阵与矩阵相乘3.1 定义3.2 乘法法则4. 矩阵的转置5. 方阵的行列式5.1 定义5.2 运算法则6. 逆矩阵6.1 定理 1-26.2 运算法则0. 定义A=(ai×j);B=(bi×j)i=1...m;j=1...n\begin{aligned}A &= \left(a_{i \times j}\right); \\ B &= \left(b_{i \times j}\right) \\ i&=1.原创 2020-06-28 08:50:31 · 6779 阅读 · 0 评论