解决Nvidia-smi没有进程但是显存不释放的问题

本文讲述了在使用PyTorch时,程序结束但GPU显存不释放的问题,原因在于多线程模拟中产生的子进程。提供了解决方案,包括查找僵尸进程的方法和批量杀进程的命令,确保内存释放。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

Nvidia显存占用问题

**
程序已停掉,但是GPU显存无法释放,我们在使用PyTorch写程序的时候, 有时候会在控制台终止掉正在运行的程序,但是有时候程序已经结束了,nvidia-smi 也看到没有程序了,但是GPU的内存并没有释放,这是怎么回事呢?
在这里插入图片描述

这是因为使用PyTorch设置多线程进行数据读取,其实是假的多线程,他是开了N个子进程(PID都连着)进行模拟多线程工作,所以你的程序跑完或者中途kill掉主进程的话,子进程的GPU显存并不会被释放,需要手动一个一个kill才行,具体方法描述如下:

使用以下命令发现僵尸进程:

fuser -v /dev/nvidia*

然后使用 kill -9 pid 杀死僵尸进程,当僵尸进程比较多时,上述命令重复输入显得非常繁琐,使用下属命令一句话杀死所有进程:

fuser -v /dev/nvidia* |awk ‘{for(i=1;i<=NF;i++)print "kill -9 " $i;}’ | sh

fuser -v /dev/nvidia* |awk '{for(i=1;i<=NF;i++)print "kill -9 " $i;}' |  sh

如果需要权限,命令更改如下:

sudo fuser -v /dev/nvidia* |awk ‘{for(i=1;i<=NF;i++)print "kill -9 " $i;}’ | sh

sudo fuser -v /dev/nvidia* |awk '{for(i=1;i<=NF;i++)print "kill -9 " $i;}' |  sh

再次输入 nvidia-smi 发现内存释放:

在这里插入图片描述

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值