sql优化1:分页查询
测试环境:
192.168.0.209上的wzgltest数据库
工具:
db2命令行
样表:PROJECT_MATERIAL
场景:
分页显示该表的所有内容,每页显示10行记录。
===================================================
来看一个普通查询:
看出没有使用到索引,执行的是全表扫描!更糟糕的是每翻一页都是这么慢,显然客户是受不了这种效果的。
=====================================================
优化思路:
考虑到每页只有10条,如果每次都全表扫描,显然不行;
缓冲整个表,然后翻页时从内存里取数据,理论上可以这么做,但开销太大;
用索引,是可行的,关键是怎么让优化器选择使用索引!索引的使用条件有两方面,一方面是where条件里要用到索引字段;其次就是数据范围方面,如果索引的取值范围超过7%(大概这个数字),则优化器就忽略索引而选择全部扫描。所以,我想到修改sql,使查询条件里含有索引字段,其次就是用返回记录范围数来显式告知优化器数据范围。
优化后的语句:
这样每次翻页执行性能是一样快,一个字,爽!
再看一下执行路径:
看得出是先全索引扫描,再用索引取数,最后join
今天,为监视192.168.0.214:50016/cwgl数据库中的sql执行情况,开启了sql监视器,内容记入表stmt_sql_bak中,该表迅速扩大,为分析语句恰好运用上述优化思想,执行效果对比如下:
优化后的sql:
其中,主键索引做了修改,使用include选项,避免了表扫描:
测试环境:
192.168.0.209上的wzgltest数据库
工具:
db2命令行
样表:PROJECT_MATERIAL
D:/>db2 select count(*) from PROJECT_MATERIAL with ur
1
-----------
1148372
1 条记录已选择。
场景:
分页显示该表的所有内容,每页显示10行记录。
===================================================
来看一个普通查询:
select *
from (
select row_number() over () rn,t.*
from PROJECT_MATERIAL t) a
where rn between ? and ?
with ur;
执行时间 Time(h:m:s.ms): 0:0:35.968
其执行路径:
Estimated Cost = 396069.062500
Estimated Cardinality = 114837.203125
Table Constructor
| 1-Row(s)
Residual Predicate(s)
| #Predicates = 1
Nested Loop Join
| Piped Inner
| Access Table Name = WZGLADM.PROJECT_MATERIAL ID = 4,21
| | #Columns = 42
| | Relation Scan
| | | Prefetch: Eligible
| | Isolation Level: Uncommitted Read
| | Lock Intents
| | | Table: Intent None
| | | Row : None
| Residual Predicate(s)
| | #Predicates = 2
Return Data to Application
| #Columns = 43
看出没有使用到索引,执行的是全表扫描!更糟糕的是每翻一页都是这么慢,显然客户是受不了这种效果的。
=====================================================
优化思路:
考虑到每页只有10条,如果每次都全表扫描,显然不行;
缓冲整个表,然后翻页时从内存里取数据,理论上可以这么做,但开销太大;
用索引,是可行的,关键是怎么让优化器选择使用索引!索引的使用条件有两方面,一方面是where条件里要用到索引字段;其次就是数据范围方面,如果索引的取值范围超过7%(大概这个数字),则优化器就忽略索引而选择全部扫描。所以,我想到修改sql,使查询条件里含有索引字段,其次就是用返回记录范围数来显式告知优化器数据范围。
优化后的语句:
select * from PROJECT_MATERIAL
where id in (select id
from (
select row_number() over () rn,t.id
from PROJECT_MATERIAL t) a
where rn between ? and ?
fetch first 10 rows only
)
with ur
执行时间 Time(h:m:s.ms): 0:0:0.078
这样每次翻页执行性能是一样快,一个字,爽!
再看一下执行路径:
Estimated Cost = 3698.492920
Estimated Cardinality = 10.000000
Table Constructor
| 1-Row(s)
Residual Predicate(s)
| #Predicates = 1
Nested Loop Join
| Piped Inner
| Access Table Name = WZGLADM.PROJECT_MATERIAL ID = 4,21
| | Index Scan: Name = WZGLADM.PM_I3 ID = 4
| | | Regular Index (Not Clustered)
| | | Index Columns:
| | | | 1: ID (Ascending)
| | | | 2: STATE (Ascending)
| | #Columns = 1
| | #Key Columns = 0
| | | Start Key: Beginning of Index
| | | Stop Key: End of Index
| | Index-Only Access
| | Index Prefetch: None
| | Isolation Level: Uncommitted Read
| | Lock Intents
| | | Table: Intent None
| | | Row : None
| Residual Predicate(s)
| | #Predicates = 2
Nested Loop Join
| Access Table Name = WZGLADM.PROJECT_MATERIAL ID = 4,21
| | Index Scan: Name = WZGLADM.PM_I3 ID = 4
| | | Regular Index (Not Clustered)
| | | Index Columns:
| | | | 1: ID (Ascending)
| | | | 2: STATE (Ascending)
| | #Columns = 42
| | Single Record
| | #Key Columns = 1
| | | Start Key: Inclusive Value
| | | | | 1: ?
| | | Stop Key: Inclusive Value
| | | | | 1: ?
| | Data Prefetch: None
| | Index Prefetch: None
| | Isolation Level: Uncommitted Read
| | Lock Intents
| | | Table: Intent None
| | | Row : None
Return Data to Application
| #Columns = 42
看得出是先全索引扫描,再用索引取数,最后join
今天,为监视192.168.0.214:50016/cwgl数据库中的sql执行情况,开启了sql监视器,内容记入表stmt_sql_bak中,该表迅速扩大,为分析语句恰好运用上述优化思想,执行效果对比如下:
D:/>db2 select count(*) from stmt_sql_bak with ur
1
-----------
2213502
1 条记录已选择。
select *
from (
select row_number() over (order by stop_time-start_time desc) rn,t.*
from stmt_sql_bak t) a
where rn between ? and ?
with ur
执行时间:Time(h:m:s.ms): 0:2:41.282
优化后的sql:
select *
from stmt_sql_bak
where id in (
select id
from (
select row_number() over (order by stop_time-start_time desc) rn,id
from stmt_sql_bak) t
where rn between ? and ?
fetch first 10 rows only )
with ur
执行时间:Time(h:m:s.ms): 0:0:4.062
其中,主键索引做了修改,使用include选项,避免了表扫描:
D:/>db2 alter table stmt_sql_bak drop primary key
DB20000I SQL 命令成功完成。
D:/>db2 create unique index stmt_i1 on stmt_sql_bak(id) include (start_time,stop_time)
DB20000I SQL 命令成功完成。
D:/>db2 alter table stmt_sql_bak add constraint stmt_p primary key(id)
SQL0598W 现有的索引 "CWGLADM.STMT_I1" 被用作主键或唯一键的索引。
SQLSTATE=01550