1、问题描述:在一个8*8的棋盘上放置8个皇后,不允许任何两个皇后在棋盘的同一行、同一列和同一对角线上。
2、关键字:递归、上溯
3、技巧:
1)、
经观察发现,对8 x 8的二维数组上的某点a[i][j](0<=i,j<=7)
其主对角线(即左上至右下)上的每个点的i-j+7的值(范围在(0,14))均相等;
其从对角线(即右上至左下)上的每个点的i+j的值(范围在(0,14))均相等;
且每个主对角线之间的i-j+7的值均不同,每个从对角线之间的i-j+7的值亦不同;
如a[3][4]:
主:3-4+7=6
从:3+4=7
因此可设两个数组b[15],c[15]分别表示主、从对角线是否安全
(为1表示有皇后,不安全;为0表示安全)
2)、
每行有且仅有一个皇后:
每i个皇后放在每i行(0<=i<=7)
void eightQueens( int line );
4、源码(C++)
//eight_queens.cpp
#include <iostream>
using namespace std;
int data[ 8 ][ 8 ]; //chess(double dimensional array)
int a[ 8 ]; //column(列)
int b[ 15 ]; //主对角线(左上至右下)
int c[ 15 ]; //从对角线(右上至左下)
int count = 0;
void eightQueens( int );
void output( const int [][ 8 ], int );
int main()
{
int i, j;
for( i = 0; i < 15; ++i ) //主、从对角线
b[ i ] = c[ i ] = 0; //表示安全
for( i = 0; i < 8; ++i )//chess
{
a[ i ] = 0; //i列安全
for( j = 0; j < 8; ++j )
data[ i ][ j ] = 0;
}
eightQueens( 0 );
cout << "/ncount = " << count << endl;
return 0;
}
void eightQueens( int line )
{
if( 8 == line )//八个皇后安置就位,输出
{
output( data, 8 );
cout << endl;
return;
}
for( int column = 0; column < 8; ++column )
{
if( 0 == a[ column ] && 0 == b[ line - column + 7 ] && 0 == c[ line + column ] )
{
data[ line ][ column ] = 1; //
安置皇后
a[ column ] = 1; //此列被占
b[ line - column + 7 ] = 1; //主对角线被占
c[ line + column ] = 1; //从对角线被占
eightQueens( line + 1 ); //下一个皇后
//重置
data[ line ][ column ] = 0;
a[ column ] = 0;
b[ line - column + 7 ] = 0;
c[ line + column ] = 0;
}
}
}
//output chess
void output( const int data[][ 8 ], int size )
{
for( int i = 0; i < size; ++i )
{
for( int j = 0; j < size; ++j )
cout << data[ i ][ j ] << ' ';
cout << endl;
}
++count;
}
5、性能:
时间复杂度O(n^2)
6、测试
环境:VC++6.0
7、后记:
此算法是我在《程序员面试宝典》第8章面试例题2的基础上,做了一定的修改。
此外,我还想做进一步修改:把eightQueens函数做成一个封装的函数,
eightQueens( int a[][ 8 ], int n ).