八皇后问题(C++)

1、问题描述:在一个8*8的棋盘上放置8个皇后,不允许任何两个皇后在棋盘的同一行、同一列和同一对角线上。

2、关键字:递归、上溯

3、技巧:

1)、
经观察发现,对8 x 8的二维数组上的某点a[i][j](0<=i,j<=7)
其主对角线(即左上至右下)上的每个点的i-j+7的值(范围在(0,14))均相等;
其从对角线(即右上至左下)上的每个点的i+j的值(范围在(0,14))均相等;
且每个主对角线之间的i-j+7的值均不同,每个从对角线之间的i-j+7的值亦不同;

a[3][4]:
主:3-4+7=6
从:3+4=7

因此可设两个数组b[15],c[15]分别表示主、从对角线是否安全
(为1表示有皇后,不安全;为0表示安全)

2)、

每行有且仅有一个皇后:
i个皇后放在每i(0<=i<=7)
void eightQueens( int line );

4、源码(C++

 

//eight_queens.cpp
#include <iostream>
using namespace std;
int data[ 8 ][ 8 ]; //chess(double dimensional array)
int a[ 8 ];   //column(列)
int b[ 15 ];  //主对角线(左上至右下)
int c[ 15 ];  //从对角线(右上至左下)
int count = 0;
 
void eightQueens( int );
void output( const int [][ 8 ], int );
 
int main()
{
 int i, j;
 
 for( i = 0; i < 15; ++i ) //主、从对角线
  b[ i ] = c[ i ] = 0; //表示安全

 for( i = 0; i < 8; ++i )//chess
 {
  a[ i ] = 0;    //i列安全
  for( j = 0; j < 8; ++j )
   data[ i ][ j ] = 0;
 }
 
 eightQueens( 0 );

 cout << "/ncount = " << count << endl;
 return 0;
}
 
void eightQueens( int line )
{
 if( 8 == line )//八个皇后安置就位,输出
 {
  output( data, 8 );
  cout << endl;
  return;
 }
 

 for( int column = 0; column < 8; ++column )
 {
  if( 0 == a[ column ] && 0 == b[ line - column + 7 ] && 0 == c[ line + column ] )
  {
   data[ line ][ column ] = 1; //
安置皇后
   a[ column ] = 1;   //此列被占
   b[ line - column + 7 ] = 1; //主对角线被占
   c[ line + column ] = 1;  //从对角线被占
   eightQueens( line + 1 ); //下一个皇后
   //重置
   data[ line ][ column ] = 0;
   a[ column ] = 0;
   b[ line - column + 7 ] = 0;
   c[ line + column ] = 0;
  }
 }
}
 
//output chess
void output( const int data[][ 8 ], int size )
{
 for( int i = 0; i < size; ++i )
 {
  for( int j = 0; j < size; ++j )
   cout << data[ i ][ j ] << ' ';
  cout << endl;
 }
 ++count;
}

5、性能:

时间复杂度O(n^2)

 

6、测试

环境:VC++6.0

 

 

7、后记:

此算法是我在《程序员面试宝典》第8章面试例题2的基础上,做了一定的修改。

 此外,我还想做进一步修改:把eightQueens函数做成一个封装的函数,

eightQueens( int a[][ 8 ], int n ).

 

洛谷八皇后问题是一个经典的回溯算法问题。根据引用中的描述,要求将8个皇后放置在8*8棋盘上,使得它们彼此不受攻击,即任何两个皇后都不在同一行、同一列或同一斜线上。 引用[2]给出了一个c++代码的实现。这段代码使用了回溯法来解决八皇后问题。通过递归地尝试每一行中的每一列,找到合适的位置来放置皇后。 具体的过程如下: 1. 定义一个一维数组x,用来存储每行皇后的位置。 2. 从第一行开始递归,尝试每一列的位置。 3. 对于每个位置,检查是否与之前的皇后位置冲突,即是否在同一列或同一对角线上。如果冲突,就继续尝试下一列;如果不冲突,就将该位置存入数组x,并继续递归下一行。 4. 当递归到最后一行时,打印出当前的皇后位置,并将可行解的数量加一。 5. 回溯到上一行,尝试下一个列的位置。 6. 当所有的解都找到后,输出解的数量。 根据引用给出的代码,共有92种不同的放置方式,即解的数量为92。<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* [8皇后_八皇后问题c++实现_](https://download.csdn.net/download/weixin_42665725/26278676)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [八皇后问题C++递归回溯法(注解)](https://blog.csdn.net/qq_43656233/article/details/105571396)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值