DP/DFS - 树形DP - 树的最长路径
给定一棵树,树中包含 n 个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。
现在请你找到树中的一条最长路径。
换句话说,要找到一条路径,使得使得路径两端的点的距离最远。
注意:路径中可以只包含一个点。
输入格式
第一行包含整数 n。
接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。
输出格式
输出一个整数,表示树的最长路径的长度。
数据范围
1≤n≤10000,
1≤ai,bi≤n,
−105≤ci≤105
输入样例:
6
5 1 6
1 4 5
6 3 9
2 6 8
6 1 7
输出样例:
22
思路:
无 向 边 建 图 , d f s 树 中 最 长 路 径 和 次 长 路 径 即 可 。 无向边建图,dfs树中最长路径和次长路径即可。 无向边建图,dfs树中最长路径和次长路径即可。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=10010,M=2*N;
int h[N],e[M],ne[M],w[M],idx;
int ans,n;
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
int dfs(int u,int f)
{
int d1=0,d2=0;
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(j==f) continue;
int d=dfs(j,u)+w[i];
if(d>=d1) d2=d1,d1=d;
else if(d>d2) d2=d;
}
ans=max(ans,d1+d2);
return d1;
}
int main()
{
memset(h,-1,sizeof h);
scanf("%d",&n);
for(int i=0;i<n-1;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c),add(b,a,c);
}
dfs(1, -1);
printf("%d\n",ans);
return 0;
}