DP/DFS - 树形DP - 树的最长路径

DP/DFS - 树形DP - 树的最长路径

给定一棵树,树中包含 n 个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。

现在请你找到树中的一条最长路径。

换句话说,要找到一条路径,使得使得路径两端的点的距离最远。

注意:路径中可以只包含一个点。

输入格式
第一行包含整数 n。

接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。

输出格式
输出一个整数,表示树的最长路径的长度。

数据范围
1≤n≤10000,
1≤ai,bi≤n,
−105≤ci≤105

输入样例:
6
5 1 6
1 4 5
6 3 9
2 6 8
6 1 7
输出样例:
22

思路:

无 向 边 建 图 , d f s 树 中 最 长 路 径 和 次 长 路 径 即 可 。 无向边建图,dfs树中最长路径和次长路径即可。 dfs

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

const int N=10010,M=2*N;

int h[N],e[M],ne[M],w[M],idx;
int ans,n;

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

int dfs(int u,int f)
{
    int d1=0,d2=0;
    
    for(int i=h[u];~i;i=ne[i])
    {
        int j=e[i];
        if(j==f) continue;
        int d=dfs(j,u)+w[i];
        
        if(d>=d1) d2=d1,d1=d;
        else if(d>d2) d2=d;
    }
    
    ans=max(ans,d1+d2);
    
    return d1;
}

int main()
{
    memset(h,-1,sizeof h);
    scanf("%d",&n);
    for(int i=0;i<n-1;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c),add(b,a,c);
    }
    
    dfs(1, -1);
    
    printf("%d\n",ans);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值