容斥原理 - Devu和鲜花 - AcWing 214

容斥原理 - Devu和鲜花 - AcWing 214

Devu有N个盒子,第i个盒子中有Ai枝花。

同一个盒子内的花颜色相同,不同盒子内的花颜色不同。

Devu要从这些盒子中选出M枝花组成一束,求共有多少种方案。

若两束花每种颜色的花的数量都相同,则认为这两束花是相同的方案。

结果需对109+7取模之后方可输出。

输入格式

第一行包含两个整数N和M。

第二行包含N个空格隔开的整数,表示A1,A2,…,AN。

输出格式

输出一个整数,表示方案数量对109+7取模后的结果。

数据范围

1 ≤ N ≤ 20 , 0 ≤ M ≤ 1 0 14 , 0 ≤ A i ≤ 1 0 12 1≤N≤20, 0≤M≤10^{14}, 0≤Ai≤10^{12} 1N20,0M1014,0Ai1012

输入样例:

3 5
1 3 2

输出样例:

3

分析:

假 设 第 i 组 中 选 择 x i 朵 花 , 假设第i组中选择x_i朵花, ixi

若 每 一 组 中 取 出 的 花 朵 数 量 无 限 制 , 问 题 等 价 于 求 方 程 : 若每一组中取出的花朵数量无限制,问题等价于求方程:

x 1 + x 2 + . . . + x n = m x_1+x_2+...+x_n=m x1+x2+...+xn=m

不 同 的 非 负 整 数 解 的 方 案 总 数 。 不同的非负整数解的方案总数。

可以参照:组合数学(隔板法) + 高精度 - 方程的解 - AcWing 1308

令 y i = x i + 1 , 则 等 价 于 求 方 程 : y 1 + y 2 + . . . + y n = m + n 令y_i=x_i+1,则等价于求方程:y_1+y_2+...+y_n=m+n yi=xi+1y1+y2+...+yn=m+n

的 正 整 数 解 个 数 , 通 过 隔 板 法 容 易 解 得 答 案 为 : C n + m − 1 n − 1 的正整数解个数,通过隔板法容易解得答案为:C_{n+m-1}^{n-1} :Cn+m1n1

本题中:

需 满 足 限 制 : x 1 ≤ A 1 , x 2 ≤ A 2 , . . . , x n ≤ A n , 需满足限制:x_1≤A_1,x_2≤A_2,...,x_n≤A_n, x1A1x2A2...xnAn

正 难 则 反 , 我 们 用 总 方 案 数 减 去 不 合 法 方 案 数 。 正难则反,我们用总方案数减去不合法方案数。

不 合 法 方 案 : 至 少 不 满 足 一 条 限 制 , 即 x i > A i , 假 设 这 种 方 案 的 集 合 为 S i 。 不合法方案:至少不满足一条限制,即x_i>A_i,假设这种方案的集合为S_i。 xi>AiSi

则 答 案 为 : C n + m − 1 n − 1 − ∣ S 1 ∪ S 2 ∪ . . . ∪ S n ∣ 则答案为:C_{n+m-1}^{n-1}-|S_1∪S_2∪...∪S_n| Cn+m1n1S1S2...Sn

利 用 容 斥 原 理 : 利用容斥原理:

∣ S 1 ∪ S 2 ∪ . . . ∪ S n ∣ = ( ∑ i = 1 n ∣ S i ∣ ) − ( ∑ i , j = 1 n ∣ S i ∩ S j ∣ ) + ( ∑ i , j , k = 1 n ∣ S i ∩ S j ∩ S k ∣ ) − . . . |S_1∪S_2∪...∪S_n|=(\sum_{i=1}^n|S_i|)-(\sum_{i,j=1}^n|S_i∩S_j|)+(\sum_{i,j,k=1}^n|S_i∩S_j∩S_k|)-... S1S2...Sn=(i=1nSi)(i,j=1nSiSj)+(i,j,k=1nSiSjSk)...

∣ S i ∣ 如 何 计 算 ? |S_i|如何计算? Si

x i > A i , 即 x i ≥ A i + 1 , 等 价 于 我 们 先 从 第 i 个 箱 子 中 选 择 A i + 1 朵 花 , x_i>A_i,即x_i≥A_i+1,等价于我们先从第i个箱子中选择A_i+1朵花, xi>AixiAi+1iAi+1

再 从 剩 下 的 m − ( A i + 1 ) 朵 中 挑 选 n − 1 朵 花 , 方 案 总 数 为 : C n + m − 1 − ( A i + 1 ) n − 1 再从剩下的m-(A_i+1)朵中挑选n-1朵花,方案总数为:C_{n+m-1-(A_i+1)}^{n-1} m(Ai+1)n1Cn+m1(Ai+1)n1

对 ∣ S i ∩ S j ∣ , 方 案 总 数 为 : C n + m − 1 − ( A i + 1 ) − ( A j + 1 ) n − 1 , 且 i < j , 保 证 不 重 复 计 算 ( i 和 j 是 对 称 的 ) 。 对|S_i∩S_j|,方案总数为:C_{n+m-1-(A_i+1)-(A_j+1)}^{n-1},且i<j,保证不重复计算(i和j是对称的)。 SiSjCn+m1(Ai+1)(Aj+1)n1i<j(ij)

∣ S i ∩ S j ∩ S k ∣ , . . . 求 法 同 理 |S_i∩S_j∩S_k|,...求法同理 SiSjSk...

方 案 总 数 : 方案总数:

C n + m − 1 n − 1 − ∑ i = 1 n C n + m − 1 − ( A i + 1 ) n − 1 + ∑ i < j , i = 1 , j = 1 n C n + m − 1 − ( A i + 1 ) − ( A j + 1 ) n − 1 − . . . C_{n+m-1}^{n-1}-\sum_{i=1}^nC_{n+m-1-(A_i+1)}^{n-1}+\sum_{i<j,i=1,j=1}^nC_{n+m-1-(A_i+1)-(A_j+1)}^{n-1}-... Cn+m1n1i=1nCn+m1(Ai+1)n1+i<j,i=1,j=1nCn+m1(Ai+1)(Aj+1)n1...

容 斥 原 理 的 时 间 复 杂 度 是 O ( 2 n ) , 容斥原理的时间复杂度是O(2^n), O(2n)

我 们 枚 举 一 个 二 进 制 数 表 示 从 哪 些 箱 子 中 选 择 A i + 1 朵 花 。 我们枚举一个二进制数表示从哪些箱子中选择A_i+1朵花。 Ai+1

注意:

① 、 正 负 号 的 处 理 。 ①、正负号的处理。

② 、 按 照 定 义 计 算 组 合 数 , 本 题 分 母 上 的 阶 乘 始 终 为 ( n − 1 ) ! , 故 我 们 无 需 每 次 都 重 复 计 算 。 ②、按照定义计算组合数,本题分母上的阶乘始终为(n-1)!,故我们无需每次都重复计算。 (n1)!

③ 、 本 题 模 数 是 质 数 , 通 过 快 速 幂 求 逆 元 来 求 组 合 数 。 ③、本题模数是质数,通过快速幂求逆元来求组合数。

代码:

#include<iostream>
#include<algorithm>
#include<cstring>

#define ll long long

using namespace std;

const int N=20, mod=1e9+7;

ll n,m;
ll A[N];
ll down=1;

ll quick_pow(ll a,ll b,int mod)
{
    ll res=1;
    while(b)
    {
        if(b&1) res=res*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return res;
}

int C(ll a,ll b)
{
    if(a<b) return 0;
    ll up=1;
    for(ll i=a;i>=a-b+1;i--) up=i%mod*up%mod;
    return up*down%mod;
}

int main()
{
    cin>>n>>m;
    for(int i=0;i<n;i++) cin>>A[i];
    
    for(int j=1;j<=n-1;j++) down=(down*j)%mod;
    down=quick_pow(down,mod-2,mod);
    
    int res=0;
    for(int i=0;i<1<<n;i++)
    {
        ll a=n+m-1, b=n-1;
        int sign=1;
        for(int j=0;j<n;j++)
            if(i>>j & 1)
            {
                sign*=-1;
                a-=A[j]+1;
            }
        res=(res+C(a,b)*sign)%mod;
    }
    
    cout<<(res+mod)%mod<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值