欧拉函数 - GCD - Extreme (II) - UVA 11426

欧拉函数 - GCD - Extreme (II) - UVA 11426

题意:

给 定 正 整 数 N , 计 算 : 给定正整数N,计算: N

G = ∑ i = 1 i < N ∑ j = i + 1 j ≤ N G C D ( i , j ) G=\sum_{i=1}^{i<N}\sum_{j=i+1}^{j≤N}GCD(i,j) G=i=1i<Nj=i+1jNGCD(i,j)

其 中 , G C D ( i , j ) 表 示 i 和 j 的 最 大 公 约 数 。 其中,GCD(i,j)表示i和j的最大公约数。 GCD(i,j)ij

输入:

多 组 测 试 数 据 , 读 到 0 为 止 。 多组测试数据,读到0为止。 0

每 组 包 括 一 个 正 整 数 N ( 1 < N < 4000001 ) 。 每组包括一个正整数N(1 < N < 4000001)。 N(1<N<4000001)

输出:

一 个 正 整 数 , 表 示 答 案 。 一个正整数,表示答案。

Sample Input

10
100
200000
0

Sample Output

67
13015
143295493160

分析:

∑ i = 1 i < N ∑ j = i + 1 j ≤ N G C D ( i , j ) = ∑ j = 1 j ≤ N ∑ i = 1 j − 1 G C D ( i , j ) \sum_{i=1}^{i<N}\sum_{j=i+1}^{j≤N}GCD(i,j)=\sum_{j=1}^{j≤N}\sum_{i=1}^{j-1}GCD(i,j) i=1i<Nj=i+1jNGCD(i,j)=j=1jNi=1j1GCD(i,j)

即 对 所 有 的 j ∈ [ 1 , N ] , 求 [ 1 , j − 1 ] 中 的 所 有 数 与 j 的 最 大 公 约 数 的 和 。 即对所有的j∈[1,N],求[1,j-1]中的所有数与j的最大公约数的和。 j[1,N][1,j1]j

记 G C D ( i , j ) = g , 则 : 记GCD(i,j)=g,则: GCD(i,j)=g:

∑ j = 1 j ≤ N ∑ i = 1 j − 1 G C D ( i , j ) = ∑ g = 1 N g × ∑ j = 1 j ≤ N ∑ i = 1 j − 1 [ G C D ( i , j ) = g ] = ∑ g = 1 N g × ∑ j = 1 j ≤ ⌊ N g ⌋ ∑ i = 1 j − 1 [ G C D ( i , j ) = 1 ] \sum_{j=1}^{j≤N}\sum_{i=1}^{j-1}GCD(i,j)=\sum_{g=1}^{N}g×\sum_{j=1}^{j≤N}\sum_{i=1}^{j-1}[GCD(i,j)=g]=\sum_{g=1}^{N}g×\sum_{j=1}^{j≤\lfloor\frac{N}{g}\rfloor}\sum_{i=1}^{j-1}[GCD(i,j)=1] j=1jNi=1j1GCD(i,j)=g=1Ng×j=1jNi=1j1[GCD(i,j)=g]=g=1Ng×j=1jgNi=1j1[GCD(i,j)=1]

问 题 转 化 为 , 对 每 一 个 g ∈ [ 1 , N ] , 统 计 [ 1 , j − 1 ] 中 与 j 互 质 的 数 的 个 数 , j ∈ [ 1 , N ] 。 问题转化为,对每一个g∈[1,N],统计[1,j-1]中与j互质的数的个数,j∈[1,N]。 g[1,N][1,j1]jj[1,N]

由 此 发 现 , 我 们 需 要 预 处 理 [ 1 , ⌊ N g ⌋ ] 的 欧 拉 函 数 。 由此发现,我们需要预处理[1,\lfloor\frac{N}{g}\rfloor]的欧拉函数。 [1,gN]

答 案 即 : 答案即:

∑ g = 1 N g × ∑ j = 1 j ≤ ⌊ N g ⌋ ϕ ( j ) \sum_{g=1}^{N}g×\sum_{j=1}^{j≤\lfloor\frac{N}{g}\rfloor}\phi(j) g=1Ng×j=1jgNϕ(j)

最 后 我 们 枚 举 g , 计 算 上 式 。 最后我们枚举g,计算上式。 g

优化:

① 、 预 处 理 ϕ ( i ) 的 前 缀 和 。 ①、预处理\phi(i)的前缀和。 ϕ(i)

② 、 由 于 我 们 枚 举 g , ⌊ N g ⌋ 的 值 可 能 重 复 , 这 里 利 用 整 除 分 块 优 化 。 ②、由于我们枚举g,\lfloor\frac{N}{g}\rfloor的值可能重复,这里利用整除分块优化。 ggN

故 还 需 预 处 理 前 缀 和 s u m [ x ] = ∑ i = 1 x i 。 \qquad故还需预处理前缀和sum[x]=\sum_{i=1}^xi。 sum[x]=i=1xi

代码:

#include<cstring>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>

#define ll long long

using namespace std;

const int N=4e6+10;

int primes[N], cnt;
bool st[N];
ll f[N], sum[N], phi[N];

void get_prime(int n)
{
    phi[1]=0;
    for(int i=2;i<=n;i++)
    {
        if(!st[i]) 
        {
            primes[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;primes[j]*i<=n;j++)
        {
            int p=primes[j];
            st[p*i]=true;
            if(i%p==0)
            {
                phi[p*i]=phi[i]*p;
                break;
            }
            else phi[p*i]=(p-1)*phi[i];
        }
    }
    for(int i=1;i<=n;i++) phi[i]+=phi[i-1];
    for(int i=1;i<=n;i++) sum[i]=sum[i-1]+i;
}

int main()
{  
    get_prime(N-1);

    int n;
    while(~scanf("%d",&n),n)
    {
        ll res=0;
        for(int i=1,j; i<=n; i=j+1)
        {
            j=n/(n/i);
            res+=phi[n/i]*(sum[j]-sum[i-1]);
        }
        printf("%lld\n",res);
    }
    
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方法有很多,下面介绍两种常见的方法: 1. 分解质因数法 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 筛法 我们可以使用筛法(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数数论中有很重要的应用,例如RSA算法的安全性就基于欧拉函数的难解性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值