问题描述
小 P 和小 R 在玩一款益智游戏。游戏在一个正权有向图上进行。 小 P 控制的角色要从 A 点走最短路到 B 点,小 R 控制的角色要从
C 点走最短路到 D 点。 一个玩家每回合可以有两种选择,移动到一个相邻节点或者休息一回合。 假如在某一时刻,小 P 和小 R
在相同的节点上,那么可以得到一次特殊奖励,但是在每 个节点上最多只能得到一次。 求最多能获得多少次特殊奖励。
输入格式
第一行两个整数 n,m 表示有向图的点数和边数。 接下来 m 行每行三个整数 xi,yi,li,表示从 xi到 yi有一条长度为 li的边。
最后一行四个整数 A,B,C,D,描述小 P 的起终点,小 R 的起终点。
输出格式
输出一个整数表示最多能获得多少次特殊奖励。若小 P 不能到达 B 点或者小 R 不能到达 D 点则输出-1。
样例输入
5 5
1 2 1
2 3 2
3 4 4
5 2 3
5 3 5
1 3 5 4
样例输出
2
题解
先从四个端点各跑一次最短路,然后通过最短的重边见新图,答案就成为了新图中的最长路或者top+dp
注意dijisktra+heap在有重边的情况下点的更新时的注意点
代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
#define maxn 50005
#define maxn1 200005
#define ll long long
const long long inf=100000000000000LL;
int n,m;
int cnt,cnt1;
int St[maxn1],End[maxn1],Next[maxn1],Last[maxn1],Len[maxn1];
int End1[maxn1],Next1[maxn1],Last1[maxn1],Len1[maxn1];
int End2[maxn1],Next2[maxn1],Last2[maxn1];
ll dis[maxn][5];
priority_queue<pair<ll,ll> >q;
bool mark[maxn];
int a,b,c,d;
void dj(int x,int y){
int i,j;
memset(mark,false,sizeof(mark));
for(i=1;i<=n;i++) dis[i][y]=inf;
dis[x][y]=0;
q.push(make_pair(0,x));
while(q.size()){
int t,s;
t=q.top().second;
s=-q.top().first;
q.pop();
if(mark[t]) continue;
mark[t]=true;
for(i=Last[t];i;i=Next[i]){
int en=End[i];
if(dis[en][y]>s+Len[i]){
dis[en][y]=s+Len[i];
q.push(make_pair(-dis[en][y],en));
}
}
}
}
void dj2(int x,int y){
int i,j;
memset(mark,false,sizeof(mark));
for(i=1;i<=n;i++) dis[i][y]=inf;
dis[x][y]=0;
q.push(make_pair(0,x));
while(q.size()){
int t,s;
t=q.top().second;
s=-q.top().first;
q.pop();
if(mark[t]) continue;
mark[t]=true;
for(i=Last1[t];i;i=Next1[i]){
int en=End1[i];
if(dis[en][y]>s+Len1[i]){
dis[en][y]=s+Len1[i];
q.push(make_pair(-dis[en][y],en));
}
}
}
}
void insert(int x,int y,int z){
Next[++cnt]=Last[x];
Last[x]=cnt;
End[cnt]=y;
Len[cnt]=z;
St[cnt]=x;
}
void insert1(int x,int y,int z){
Next1[cnt]=Last1[x];
Last1[x]=cnt;
End1[cnt]=y;
Len1[cnt]=z;
}
void insert2(int x,int y)
{
Next2[++cnt1]=Last2[x];
Last2[x]=cnt1;
End2[cnt1]=y;
}
ll minl;
int ru[maxn];
bool jd[maxn],mark2[maxn];
int ans=0;
queue<int>tp;
int dp[maxn];
main()
{
// freopen("game.in","r",stdin);
// freopen("game.out","w",stdout);
int i,j;
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
insert(x,y,z);
insert1(y,x,z);
}
scanf("%d%d%d%d",&a,&b,&c,&d);
dj(a,1);dj(c,3);
dj2(b,2);dj2(d,4);
int minl=dis[b][1]+dis[d][3];
int minl1=dis[b][1],minl2=dis[d][3];
if(minl>=inf){
cout<<"-1";return 0;
}
for(i=1;i<=n;i++){
if(dis[i][1]+dis[i][2]+dis[i][3]+dis[i][4]==minl){
jd[i]=true;
}
}
for(i=1;i<=n;i++)
for(i=1;i<=m;i++){
int x=St[i],y=End[i];
if(dis[x][1]+dis[x][3]+Len[i]*2+dis[y][2]+dis[y][4]==minl){
insert2(x,y);
ru[y]++;
}
} //建立新图
// for(i=1;i<=n;i++)cout<<chu[i];
for(i=1;i<=n;i++){
if(ru[i]==0){
tp.push(i);
if(jd[i]) dp[i]=1;
}
}
while(tp.size()){
int t=tp.front();
tp.pop();
for(i=Last2[t];i;i=Next2[i]){
int en=End2[i];
dp[en]=max(dp[en],dp[t]+1);
ru[en]--;
if(ru[en]==0) tp.push(en);
}
}
for(i=1;i<=n;i++) ans=max(ans,dp[i]);
cout<<ans;
}