scheme心得(2) 从列表到流,高阶函数,惰性计算

本文探讨了Scheme中的高阶函数在处理列表中的应用,以及如何通过封装列表为流来实现惰性计算。文章通过N皇后问题展示了如何结合map、filter和foldr等函数解决复杂问题,并介绍了流的概念,包括cons-stream、stream-car、stream-cdr等流操作,以及延迟求值的delay和force函数。
摘要由CSDN通过智能技术生成

摘要:介绍了scheme的高阶函数用法,利用高阶函数处理列表,以及将列表封装为流来实现惰性计算。

  数据结构是编程的核心问题。是算法的基础。有了数据结构,对结构内的数据进行操作,才有了各种算法。lisp系的基本数据结构是列表,当然包括scheme。可以在某种方言中加入别的数据结构,例如映射,或者集合,但是这种数据结构的实现,或者以列表为底层,或者编译成其他语言的原生数据结构。因为lisp原生只有列表。如果只用lisp解释执行lisp,那么任意算法都至少是O(n)的时间复杂度。只有编译成其他语言,并引入地址或者引用的概念,能够随机地址读写,才能做到O(1)的最快效率。

  基础简单的核心数据结构,带来的是更强大的元编程能力。lisp语言的实现,可以只依赖7个关键词。但是在工程而言,又未必是好事。因为工程上讲究的是快捷、实用,甚至可以牺牲部分绝对正确性,对于从头造轮子兴趣不大。

  函数式编程最大的特点之一是高阶函数。可以把函数作为参数传递给另一个函数,也可以把函数作为返回值。利用高阶函数,可以达到在整体上操作列表的目的。例如常用的map、filter、foldr等函数。

它们的用法是:

(map lambda1 list1) 
(filter lambda1 list1) 
(foldr lambda1 list1)
 
 

 它们的定义是: 

(define (map lambda1 list1)
  (if(null? list1)
     '()
     (cons (lambd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值