人生第一道polya(玻璃呀!)定理。
搞了一个上午的群论,唯一看懂的就是伽罗华很会作……
你说你一个搞数学的,怎么就喜欢革命呢。
唯一的遗憾就是过分追求简洁hhhhhhhhhh这评价真是十分中肯啊。
好了不扯了,反正玻璃呀定理就是用来求染色数的,具体的请任意翻开一本组合数学教材,或者跟我一样(安利一下)找学堂在线的课看去。
显然我们可以发现对序列(1,2,3,......n)做i次轮换出来的置换可以被分解为gcd(i,n)个循环,于是这里套一下Polya定理,然后对于翻转来说的话奇偶讨论一下就好了
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll mul[30];
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int main(){
//freopen("a.in","r",stdin);
mul[0]=1;
for(int i=1;i<=28;i++)mul[i]=mul[i-1]*3;
int n;
while(scanf("%d",&n)&&n>=0){
if(!n){
puts("0");
continue;
}
ll sum=0,cnt=n;
for(int i=1;i<=n;i++){
sum+=mul[gcd(i,n)];
}
if(n&1){
sum+=mul[(n+1)/2]*n;
cnt+=n;
}else{
sum+=(mul[n/2]+mul[n/2+1])*n/2;
cnt+=n;
}
printf("%lld\n",sum/cnt);
}
return 0;
}