表格里的缺失值以及空白的处理

本文介绍了如何在PythonDataFrame中使用Pandas和Numpy库处理缺失值,包括删除含有缺失值的列和行,以及用`np.nan`替换空白行后进行删除操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ps:删掉nan,创造nan来替代空白行,然后删掉

#缺失值处理
df_dropna = df1.dropna(axis = 1)
#删掉有缺失值的行
ddff_filter = df1.dropna(subset = ['Customer Type'])
#删掉有缺失值的列
ddff_filter = df1.dropna(axis = 1)

#空白行处理
import pandas as pd
import numpy as np
df1.replace('',np.nan,inplace = True)
df1.dropna(axis = 1,inplace = True)
df1.dropna(axis = 0,inplace = True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值