投入产出表

本文详细介绍了投入产出表的概念、历史背景、经济理论基础,以及模型的构成,包括中间使用、最终使用和最初投入矩阵。重点讲解了直接消耗系数和直接分配系数在分析经济结构和政策影响中的作用,以及各种系数在产业链分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提纲:认识投入产出表(有图有解释)及主要指标含义

1 投入产出表概述

1.1 背景

1.1.1 提出背景

投入产出技术由美国经济学家列昂惕夫(Leontief)于20 世纪30 年代创立,是利用数学方法研究某个系统(如经济系统)各项活动中的投入与产出之间的数量关系,特别是研究和分析国民经济各个部门在产品的生产和消耗之间数量依存关系的一种经济分析方法。这里的经济系统可以是整个国民经济,也可以是地区、部门或企业,也可以是多个地区、多个部门、多个国家。

1.1.2 内涵解释

投入是指产业部门在生产产品及服务的过程中对原材料、工具设备以及劳动力等的使用。

投入的分类中间投入

是在生产过程中被完全消耗掉的中间产品

这些中间品的价值全部进入消耗该中间品的部门的产出价值中。

最初投入是指在生产过程中投入的初始要素,在生产过程中只被部分消耗。其价值是部分地、以折旧等方式进入消耗该产品地部门地产出价值中,这种投入可以是k、l。对应着经济学中地增加值,因此也被乘坐是增加值投入。

产出是指一项活动地结果,如生产活动地结果为本系统各部门生产地产品(包括物质产品和劳务)。

产出的分类中间需求

是指本时期在本系统内需要进行进一步加工地产品。

作用是作为中间投入被各部门生产消耗掉 

最终需求是指本时期在本系统内已经最终加工完毕的产品,也可以成为最终品。进入市场地形式可以为消费、形成资本、出口。

若将国民经济简单地分成几个物质生产部门,则每个部门都有双重身份,既作为生产部门把自己的产品分配给其他部门,也会在生产过程中消耗其他部门的产品。

1.1.3 投入产出技术的经济理论基础

是瓦尔拉斯的一般均衡理论,其分析工具为投入产出表。投入产出表也称为部门联系平衡表,它是定量研究投入与产出间关系的工具,反映了国民经济各部门的投入来源与产出去向,以及各部门之间相互提供或消耗产品的经济联系。

1.2 投入产出模型

简化形式的三部门投入产出表的结构如下(实际中每个部门都会拆分为很多行业和子行业):

上面第1、2、3象限,去掉汇总行/列后,分别叫做中间使用、最终使用、最初投入,记作矩阵X, Y, Z。第4象限是再分配,一般是空的。再记总投入、总产出的行、列分别为input_row(IN)、output_column(OUT)。

水平方向的平衡方程

\sum_{j=1}^{n}x_{ij}+\sum_{c=1}^{C}y_{ic}=Out_{i}

该方程表示i部门生产的产品Out_{i}一部分作为中间产品用于奇特部门的进一步生产,另一部分作为最终产品满足消费需求、资本形成需求以及出口需求。i从1取到n,就反映了各部门产品的使用情况。

垂直方向的平衡方程

\sum_{i=1}^{n}x_ij+\sum_{r=1}^{R}Z_rj=In_j

该方程表示j部门生产所需投入In_j包括来自各部门的中间产品和其他支撑生产活动的最初投入。j从1取到n,就反映了各部门生产所需投入的情况。

数据间关联

1.对任意部门,其总投入和总产出是相等的。也就是In_j=Out_{i}。逻辑参考GDP的增值法和收入法

2.考虑中间使用矩阵(io_matrix),水平代表生产产品的分配,垂直代表生产过程的消耗。据此求出直接消耗系数矩阵。在此基础再求列昂惕夫逆矩阵,反映产业间联动作用。

3.考虑最终使用矩阵(总需求矩阵),可以用其分析经济结构和政策对某全系统或某部门影响。

4.考虑最初投入矩阵(增加值矩阵),在实际分析中,第三象限是计算出口或其他最终需求变动拉动增加值的必备要素,可用于分析行业出口蕴含的国内增加值及国外增加值,在贸易增加值核算中起到重要作用,是全球价值链研究重点关注的研究对象。

5.Y求和=Z求和=GDP

1.3真实数据实例

在国家投入产出表中,根据对进口商品的处理方法的不同,投入产出模型可以分:

投入产出模型分类
竞争型投入产出模型非竞争型投入产出模型
各生产部门消耗的中间投入部分没有区分哪些是本国生产的,哪些是进口的,假定两者可以完全替代,只在最终需求象限中有一个进口列向量。中间投入,则分为国内生产的中间投入和进口品中间投入两大部分(国产品、进口品)
此类投入产出模型无法反映各生产部门与进口商品之间的联系。反映了两者的不完全替代性

中国的投入产出表可以从国家数据 (stats.gov.cn)下载。

2 投入产出分析

直接消耗系数和直接分配系数都是基于标准化的方法。

2.1 横向-直接分配系数等

直接分配系数(direct_output),记作Hh_{ij}=\frac{x_ij}{Out_i}其中x_{ij}反映了I部门对j部门的直接供给量,而h_{ij}反映了i部门的单位生产中有多少分配到j部门。反映直接推动效应。
完全感应系数(Ghosh 逆矩阵)\tilde{G}=\frac{1}{I-H}g_{ij}反映了I部门的单位最初投入(增加值),引起的j部门生产增加量。反映推动效应之和。
完全分配系数\tilde{G}-I

2.2 纵向-直接消耗系数等

直接消耗系数(direct_input),记作A

直接消耗系数(direct_input),记作Aa_{ij}=\frac{x_{ij}}{In_j}其中x_{ij}反应了j部门对i部门的直接消耗量,而a_{ij}反映了j部门的单位生产中要消耗掉多少i部门的产品。反应直接拉动效应。
完全需要系数(列昂惕夫逆矩阵\tilde{B}=\frac{1}{I-A}b_{ij}反映j部门的单位最终需求,对i部门总产出的需要量。反映拉动效应之和。
完全消耗系数\tilde{B}-I

上述之和,意味着有直接 和简介两部分。

2.3 前向联系与感应度系数

前向联系为当国民经济各部门都增加单位最终产品时完全需要的 部门产品\sum_{j=1}^{n}\tilde{g_{ij}}\sum_{j=1}^{n}\tilde{g_{ij}}反映了 部门产品对国民经济的推动作用。
感应度系数前向联系除以各行业前向联系平均值IS_i=\frac{S_i*\beta _i}{\sum_{i}S_i*\beta _i}反映了 部门增加单位增加值对各部门产出的推动程度便于比较各部门推动作用大小对前向联系进行标准化处理,使推动作用为中等的部 门取值为1,得到感应度系数。其中,S_i 为传统方法计算得到的部门 i的感应度系数, \beta _i 为部门 i初始投入占国民经济初始投入总量比重。从Z矩阵可以求出。

2.4 后向联系与影响力系数

后向联系\sum_{j=1}^{n}\tilde{b_{ij}}

反映了 部门增加单位最终产品对整个国民经济的拉动作用。

影响力系数R_i=\frac{\sum_{j=1}^{n}\tilde{b_{ij}}}{\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\tilde{b_{ij}}}是后向联系除以各行业后向联系平均值,反映了 部门增加一单位最终需求对国民经济各部门的需求波及程度。
产业影响力系数IR_j=\frac{R_j*\alpha _j}{\sum_{j}R_j*\alpha _j}比传统方法计算的影响力系数更全面地反映一个行业在国民经济中的地位和作用。

此外还有直接增加值系数和完全增加值系数、APL 系数、生产诱发度、上游度系数等等,还可以用于划分产业链上下游等等。此处暂略不表。


 资料来源:知乎账号“失而复得的时间”,原文链接如下:投入产出分析框架 - 知乎

根据提供的引用内容,投入产出是由美国经济学家华西里·列昂惕夫在1930年代提出并研究的一种经济分析工具,用于研究经济活动的相互依存性和经济结构。投入产出包含了各个产业之间的投入和产出关系,可以用来分析不同产业之间的相互影响和经济发展的结构。\[1\] 在计算投入产出时,可以使用完全消耗系数来计算。完全消耗系数是通过里昂惕夫逆矩阵减去单位矩阵得到的。具体的计算公式可以参考引用\[2\]中提供的公式。在计算过程中,需要使用到里昂惕夫逆矩阵和单位矩阵,可以通过MINVERSE函数来计算逆矩阵。\[2\]\[3\] 至于如何在Stata中计算投入产出,由于没有提供相关的Stata代码或具体的计算步骤,无法给出具体的回答。但是可以使用Stata中的矩阵运算函数和命令来进行投入产出的计算,例如使用matrix命令定义矩阵,使用matrix inverse命令计算逆矩阵,使用matrix multiply命令进行矩阵相乘等等。具体的计算方法可以根据具体的数据和需求来确定。 #### 引用[.reference_title] - *1* [投入产出直接消耗系数和完全消耗系数Stata版本(1990-2017年)](https://blog.csdn.net/li514006030/article/details/124677924)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [投入产出之直接消耗系数和完全消耗系数计算--基于Excel](https://blog.csdn.net/m0_46271335/article/details/106274653)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值