“傻瓜”学计量——稳健性检验的10种方法(持续更新)

本文概述了稳健性检验的10种关键方法,包括变量替换、检验方法选择、内生性处理、特殊样本处理、控制变量增加、样本变换、排除非线性关系和异常值处理。这些方法旨在确保研究结论的可靠性并应对实证研究中的各种潜在偏差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提纲:“10种” 稳健性检验的方法

我们为何要做稳健性检验?要确保结论的稳健性

1.变量替换(自变量 因变量,比例、自然对数、程度变量)

在文献中一般表现为:参考其他大佬的测量方法、和指标选择。

在实证中,变量替换的对象主要是所考察主题的因变量(被解释变量)、自变量(解释变量)。根据不同论文的度量 方法,可以引用不同的变量替换方式,来考察问题或者亚久假设的稳健性。

2.检验方法替换(连续变量 离散变量)

大部分情况下,会根据因变量的特征来选择方法。 例如,当主题所考察的因变量为连续变量,其存在不少0样本时,文章选择最小二乘法(OLS)、tobit模型都比较合适,显然这两种方法在一定程度上来讲 都是可以替换的。

少部分情况下,选择方法时,也要考虑样本的特性。例如,当样本时截面数据或面板数据时,选用的方法也会不同。

3.内生性问题(工具变量法、DID等)

内生性是社科领域中研究因果关系时必须要关注和考察的。

内生性问题产生的原因遗漏变量
反向因果
自我选择偏误
样本选择偏误
内生性问题的解决方法工具变量法
Heckmann二阶段模型考察
自然实验法
DID双重差分法

内生性具体内容及stata指令 参考我的另一篇笔记:

CSDN

4.特殊样本剔除(特殊年份 特殊地区 特殊个体)

在文献中的出现形式:放大或缩小样本时间窗口、剔除例如武汉新冠时期GDP、剔除我国大量增发货币的年份的数据。

5.增加其他控制变量(个体、企业、地区等)

增加那些,在模型回归分析中我们经常忽视或者遗漏的一些重要因素,而这些因素将是影响我们考察因果关系中的重要变量。根据以往文献选取控制变量。

在文献中的出现形式:增加控制变量、修改模型设定(在基准模型中加入固定效应、行业✖年份交互固定效应)。

6.变换样本

即:作者用某个数据库的样本得出结论后,再通过其他样本(或数据库)进行检验分析,从而进一步夯实了这个结论。

(比较麻烦)
 

7.排除其他理论依据假说

用实证研究推翻别人的逻辑。

8.多重共线性问题(膨胀因子分析法)

逐步回归法:第一种:将显著的变量逐步进行剔除。

                      第二种:若存在交乘项时,应先对变量进行中心化处理,再得出交乘项。

9.排除(非)线性关系(构建平方项纳入方程等)

基本思路:在基准模型中引入自变量的二次方项就可以了。

为避免多重共线性问题,需将二次方向先进行中心化处理再引入基准方程。

10.剔除异常值的影响

对连续变量进行缩尾处理


资料来源:z值得收藏:实证研究中,稳健性检验思路有哪些?_哔哩哔哩_bilibili

关于稳健性检验_哔哩哔哩_bilibili

RStudio是一个集成开发环境(IDE),可以用来编写、运行和调试R语言程序。对于稳健性检验,我们可以使用RStudio提供的调试工具来帮助我们找到代码中的错误和异常。 具体步骤如下: 1. 在RStudio中打开需要进行稳健性检验的R脚本。 2. 在需要进行调试的代码行的左侧单击行号,会在代码行的左侧出现一个蓝色的点,表示设置了一个断点。 3. 在RStudio的菜单栏中选择“Debug”->“Debug Active File”或使用快捷键“Ctrl+Shift+D”来启动调试模式。 4. 当程序运行到设置的断点处时,程序会自动停止,此时可以使用RStudio提供的调试工具来查看变量的值、执行代码行或者跳过代码行等操作。 至于解释变量和被解释变量滞后一期,我们可以简单地理解为将自变量和因变量都向后移动一期,比如将y(t)作为因变量,x(t-1)作为自变量,这样就可以看到自变量对因变量的影响是否存在滞后效应。在R语言中,我们可以使用lag()函数来实现滞后操作,例如: ```R # 创建一个示例数据集 data <- data.frame(x = c(1, 2, 3, 4, 5, 6), y = c(2, 3, 4, 5, 6, 7)) # 将自变量和因变量都向后移动一期 data$y_lag1 <- lag(data$y, 1) data$x_lag1 <- lag(data$x, 1) # 进行回归分析 model <- lm(y_lag1 ~ x_lag1, data = data) # 查看回归结果 summary(model) ``` 上面的代码中,我们使用lag()函数将y和x向后移动一期,并使用lm()函数进行回归分析。最后使用summary()函数查看回归结果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值