OpenMV4 H7 Plus外接LCD显示

本文介绍了如何使用OpenMV平台连接1.8寸st7735液晶屏,通过4线SPI接口实现128*160分辨率的TFT高亮显示,并提供了详细的接线示例和使用官方代码进行LCD屏幕实时图像显示的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenMV驱动1.8寸液晶屏(st7735驱动IC,4线SPI驱动,128*160分辨率,TFT高亮色)

接线关系:

LCD端OpenMV端
GNDGND
VCC3.3V
SCL P2
SDA P0
RESP7
DCP8
CSP3
BLKP6

使用OpenMV官方代码测试

# LCD Example
#
# Note: To run this example you will need a LCD Shield for your OpenMV Cam.
#
# The LCD Shield allows you to view your OpenMV Cam's frame buffer on the go.

import sensor, image
import lcd

sensor.reset() # Initialize the camera sensor.
sensor.set_pixformat(sensor.RGB565) # or sensor.GRAYSCALE
sensor.set_framesize(sensor.QQVGA2) # Special 128x160 framesize for LCD Shield.
lcd.init() # Initialize the lcd screen.
#lcd初始化

while(True):
    lcd.display(sensor.snapshot()) # Take a picture and display the image.
    #将图像显示在lcd中

图像显示结果:

<think>嗯,用户想了解如何使用OpenMV追踪色块,而且他是小白,所以需要从基础讲起。首先,我得确定他是否有OpenMV相机和相关软件。可能得先介绍硬件准备,比如OpenMV Cam型号,然后安装IDE。 接下来,步骤要分清楚。第一步连接设备,安装固件,这部分很重要,因为如果固件没装好,后面可能无法进行。然后教他打开IDE,连接摄像头,确保设备被识别。 然后是基本函数的使用,比如创建摄像头对象,可能需要解释sensor模块的设置,调整图像大小和色彩格式。色彩追踪的关键在于阈值设定,这里可能需要详细说明如何获取目标颜色的LAB阈值,用工具阈值编辑器,或者手动调整。 接着是图像处理函数,比如寻找色块,用find_blobs函数,参数如阈值、像素阈值、区域合并等都需要解释清楚,因为用户可能不知道这些参数的作用。特别是合并区域,可能影响检测效果。 然后循环部分,实时检测,画出矩形框,显示坐标和大小。这部分代码要简单明了,注释清楚,方便用户理解。还要考虑如何处理没有找到色块的情况,避免程序出错。 可能用户会遇到的问题,比如颜色阈值不准确,光线影响,或者摄像头对焦问题。需要给出解决办法,比如使用阈值编辑器,固定光源,调整摄像头焦距。此外,目标太小或移动快的话,可能需要优化代码,比如调整摄像头分辨率,或者使用更高效的算法。 最后,应用实例可以帮他理解实际用途,比如追踪小车或机械臂抓取。这部分能激发他的兴趣,看到实际效果。可能需要提醒他进一步学习PID控制或通信协议,以便更复杂的项目。 总之,要循序渐进,步骤清晰,避免专业术语过多,用简单易懂的语言,确保小白用户能跟上每一步。同时,预见他可能遇到的问题,提前给出解决方案,减少他的挫败感。最后通过实例展示应用场景,帮助他巩固所学内容。</think>好的,我将以零基础角度为你详细讲解OpenMV色块追踪的实现步骤,并提供完整代码和调试技巧: 一、硬件准备 1. 需要设备: - OpenMV Cam (推荐H7 Plus型号,带彩色LCD屏) - 微型三脚架(可选,方便固定角度) - USB数据线(最好带磁环抗干扰) - 待追踪的彩色物体(建议先用纯色乒乓球练习) 二、软件环境搭建 1. 下载OpenMV IDE: - 官网 https://openmv.io 下载对应系统版本 - 首次连接时会自动安装CP210x USB驱动 2. 固件更新: ```python # 连接摄像头后,点击IDE右下角"升级固件" # 选择最新稳定版固件(如v4.3.0) ``` 三、基础代码结构 ```python import sensor, image, time, pyb # 初始化摄像头 sensor.reset() # 复位传感器 sensor.set_pixformat(sensor.RGB565) # 设置彩色模式 sensor.set_framesize(sensor.QVGA) # 320x240分辨率 sensor.skip_frames(time = 2000) # 等待设置生效 sensor.set_auto_gain(False) # 关闭自动增益 sensor.set_auto_whitebal(False) # 关闭白平衡 # 定义颜色阈值(LAB格式) target_color = (30, 64, -128, 127, -128, 127) # 示例红色阈值 while(True): img = sensor.snapshot() # 捕获一帧图像 # 寻找色块 blobs = img.find_blobs([target_color], pixels_threshold=100, area_threshold=100, merge=True) if blobs: max_blob = max(blobs, key=lambda b:b.pixels()) # 绘制追踪框 img.draw_rectangle(max_blob.rect(), color=(0,255,0)) img.draw_cross(max_blob.cx(), max_blob.cy(), color=(0,255,0)) # 输出坐标信息 print("中心坐标: (%d, %d)" % (max_blob.cx(), max_blob.cy())) print("宽度: %d, 高度: %d" % (max_blob.w(), max_blob.h())) ``` 四、核心参数详解 1. 颜色阈值获取技巧: - 使用IDE自带的「阈值编辑器」 - 步骤: 1. 点击IDE顶部菜单「工具」->「机器视觉」->「阈值编辑器」 2. 将目标物体放置在摄像头前 3. 拖动LAB滑块直到物体区域变为白色 4. 复制自动生成的阈值代码 2. find_blobs参数说明: ```python blobs = img.find_blobs( thresholds, # 颜色阈值列表 roi=(x,y,w,h), # 检测区域(可缩小范围提升速度) pixels_threshold=100, # 最小有效像素数 area_threshold=100, # 最小区域面积 merge=True, # 合并相邻区域 margin=10 # 合并边界容差 ) ``` 五、调试常见问题解决 1. 颜色识别不稳定: - 解决方法:固定光源环境,避免自然光变化 - 在代码中添加: ```python sensor.set_auto_exposure(False, exposure_us=10000) # 手动设置曝光时间 ``` 2. 检测延迟过高: - 优化措施: ```python sensor.set_framesize(sensor.QQVGA) # 降分辨率到160x120 sensor.set_windowing((80,60,160,120)) # 局部检测区域 ``` 3. 多目标追踪: ```python for i, blob in enumerate(blobs): if blob.code() == 1: # 只显示主色块 img.draw_rectangle(blob.rect()) img.draw_string(blob.x()+2, blob.y()+2, str(i)) ``` 六、进阶应用示例(云台追踪) ```python from pid import PID pan_pid = PID(p=0.07, i=0, imax=90) # 创建PID控制器 tilt_pid = PID(p=0.05, i=0, imax=90) while(True): img = sensor.snapshot() blobs = img.find_blobs(...) if blobs: max_blob = max(blobs, key=lambda b:b.pixels()) pan_error = max_blob.cx() - img.width()/2 tilt_error = max_blob.cy() - img.height()/2 pan_output = pan_pid.get_pid(pan_error, 1) tilt_output = tilt_pid.get_pid(tilt_error, 1) # 控制云台电机转动(需外接舵机) pan_servo.angle(pan_servo.angle() + pan_output) tilt_servo.angle(tilt_servo.angle() + tilt_output) ``` 七、学习建议 1. 实践路径: 基础色块追踪 → 多颜色识别 → 形状识别 → 二维码识别 → 人脸检测 2. 推荐调试顺序: 颜色校准 → 阈值优化 → 检测区域设置 → 滤波处理 → 输出控制 3. 关键API扩展学习: - `img.binary()` 二值化处理 - `img.mean(1)` 图像滤波 - `img.find_edges()` 边缘检测 - `img.find_qrcodes()` 二维码识别 遇到具体问题时可进一步测试: 1. 用IDE帧缓冲区查看实时图像 2. 通过串口终端输出调试信息 3. 使用逻辑分析仪观察时序信号
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值