cuML 机器学习 GPU库 sklearn 的上位替代 在Windows上使用办法

cuml库

因为数据量太大,使用CPU的sklearn训练时间太长,通过查找加速办法发现了cuml库,这是通过gpu加速的机器学习的sklearn的替代品,api接口与sklearn基本一致,能很快手上。但查看介绍才知道这个库只支持Linux系统,好在我在其主页发现了它支持WSL2,这解决了在windows系统上使用的cuml的问题。

一、安装WSL2

这是一个在Windows上原生运行的Linux子系统,据说在上运行大概损耗2%的性能(不知道真假),安装也很简单,首先需要更新你的系统至较新版本(具体版本可查看官方教程
注意WSL2只支持WIN10、11的较新版本这点非常重要!(虽然RAPIDS说只支持win11,但我的win10依旧可以安装使用)
安装教程可查看(官方教程非常清楚简单,按步骤来就可以轻松安装):(官网 link)
重要步骤:

  1. 启动Linux子系统和虚拟机功能(启动后重启电脑)
  2. 在Microsoft store里搜索Ubuntu,选择20或者22版本进行下载(到此环境基本安装好了)
  3. 建议在Microsoft store里安装一个终端(如果没有的话)
  4. 在终端里打开Ubuntu的命令行,设置Ubuntu系统的账号和密码 (系统就可用了)

二、安装VScode进行使用(推荐)

如果没有可视化需求,那么通过命令行基本可以实现所有的功能。使用VScode基本能满足所有的训练和调试代码需求,在Vscode的扩展里安装WSL
下载WSL
在远程资源管理中选择WSL,然后连接Ubuntu就可以使用系统了
选择WSL连接Ubuntu

三、安装 CUDA 和 Mincoda

  1. WSL2能使用Windows自带的GPU驱动,只需要安装cuda即可,网上教程很多,这里就不详细说明了。
    注意:安装的cuda版本是有限制的,建议查看RAPIDS官网的推荐,目前推荐安装11.8或者12.0
  2. 安装好cuda后安装minconda 官方安装教程链接,这里我也给出安装命令方便大家复制使用
    按照以下命令即可以安装配置好
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

在bash中激活环境

~/miniconda3/bin/conda init bash

四、安装cuML库

安装非常简单,之间使用官方给的办法就好,这里给出 RAPIDS 官方链接 选择你的cuda版本和需要的库即可,这里我只需要cuML
在这里插入图片描述

安装命令如下:

# 替换你想要的环境名,选择python版本目前仅支持3.9和3.10,预览版支持3.11
conda create -n your_env_name python=3.9/3.10  
# 激活环境
conda activate your_env_name 
# 安装cuML
pip install \
    --extra-index-url=https://pypi.nvidia.com \
    cuml-cu11==24.2.*

至此你就能在windows系统上使用cuml库了,甚至别的只支持Linux系统的库都可以在上面安装使用

### 如何在 Windows 上安装 cuML #### 准备工作 为了能够在 Windows 上成功安装并运行 cuML,需要先确保计算机满足最低硬件需求以及软件环境配置。对于 cuML 的支持来说,Windows 平台主要依赖于 WSL 2 (Windows Subsystem for Linux 2),这是因为 cuML 主要针对 Linux 系统进行了优化和支持。 #### 安装 WSL 和 Ubuntu 发行版 由于 cuML 是基于 CUDA 技术构建的机器学习,因此建议使用带有 GPU 支持的 WSL 2 来作为开发环境的基础平台[^1]。可以通过 PowerShell 执行命令来启用 WSL 功能,并通过 Microsoft Store 或者直接下载 `.appx` 文件的方式获取 Ubuntu LTS 版本发行包进行本地化安装[^2]: ```powershell wsl --install -d Ubuntu-18.04 ``` 此命令会自动完成 WSL 及所选 Linux 发行版本的设置过程。 #### 更新系统和安装 NVIDIA 工具链 一旦有了合适的 Linux 子系统之后,下一步就是更新该系统的软件源列表并且安装必要的驱动程序和其他工具链组件以便能够正常使用 GPU 加速特性。这通常涉及到以下几个方面的工作: - 更新 APT 软件包索引; - 添加 NVIDIA 的官方仓地址; - 下载最新的显卡驱动; - 获取 CUDA Toolkit 和 cuDNN SDK; 这些步骤可以在终端内依次执行相应的 apt-get 命令实现自动化处理[^4]。 #### 创建 Conda 环境并安装 cuML 当所有的前置条件都准备好以后就可以着手准备创建一个新的 conda 环境专门用于承载 cuML 及其关联的数据科学栈了。推荐采用 Miniconda 或 Anaconda 这样的 Python 包管理系统来进行管理,因为它们提供了更简便的方式来管理和隔离不同项目的依赖关系。下面是一个简单的例子展示怎样定义一个名为 `cuml_env` 的新环境并将 cuML 设置进去: ```bash # 如果还没有安装 miniconda/anaconda, 则需先行安装 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh # 初始化 conda 后重新加载 shell 配置文件使更改生效 source ~/.bashrc # 开始创建新的 conda 环境 conda create --name cuml_env python=3.9 -y conda activate cuml_env # 接着添加 rapidsai 渠道以方便后续安装 cuML conda config --add channels rapidsai conda config --set channel_priority strict # 最终安装 cuML 及其他常用数据科学 conda install cudatoolkit=11.2 cuml dask-cudf pyarrow pandas scikit-learn jupyterlab -y ``` 以上操作完成后便拥有了一个完整的、适合开展高性能数据分析工作的集成开发环境。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值