HDU 5699 货物运输

题目连接:点击打开链接


使得运输方案的最长时间最小,很明显有二分的性质,然而此题的问题在于如何检测所有的运输时间都小于给定值mid


假设传送点在x和y上(x<y),那么每个运输方案的时间为min(ri-li, |li-x|+|ri-y|)


如果ri-li<=mid就直接可行,否则要判断 |li-x|+|ri-y|是否小于mid


但是这个不是很好看出怎么判断,我们不妨把(li,ri)都当成平面上的点,那么|li-x|+|ri-y|就相当于(x,y)到(li,ri)的哈密顿距离,于是问题就变成

是否存在一个位置,使得距离所有的点的哈密顿距离都不超过mid

可以画张图

判断一下需要覆盖的范围能不能被能覆盖的范围完全覆盖到即可,这就简单多了


下面代码

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <string>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <queue>
#include <map>
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int inf = 0x3fffffff;

const int maxn=1000000;
PII a[maxn+10];
int n,m;

bool check(int mid){
	int mn1,mn2,mx1,mx2;
	mn1=mn2=inf; 
	mx1=mx2=-inf;

	for (int i = 0; i < m; ++i)
	{
		if(a[i].se-a[i].fi<=mid) continue;

		mn1=min(mn1,a[i].fi+a[i].se);
		mx1=max(mx1,a[i].fi+a[i].se);

		mn2=min(mn2,a[i].fi-a[i].se);
		mx2=max(mx2,a[i].fi-a[i].se);
	}

	if(mx1==-inf) return true;
	else if(mx1-mn1>2*mid || mx2-mn2>2*mid) return false;
	else return true;
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("test.in", "r", stdin);
#endif

    while(~scanf("%d%d",&n,&m)){
    	//printf("Case #%d:\n",cas);
    	for (int i = 0; i < m; ++i)
    	{
    		scanf("%d%d",&a[i].fi, &a[i].se);
    		if(a[i].fi>a[i].se) swap(a[i].fi,a[i].se);
    	}

    	int l=-1, r=maxn;
    	while(r-l>1){
    		int mid=(l+r)/2;

    		if(check(mid)) r=mid;
    		else l=mid;
    	}
    	printf("%d\n",r);
    }

    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/no_name233/article/details/51549411
文章标签: ACM解题报告
个人分类: ACM
下一篇uva1621 Jumping Around
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭